MG ITALY PRODUCTS e MACHINERY 2023

"Teamwork is the ability to work together toward a common vision. The ability to direct individual accomplishments toward organizational objectives". (A.Carnegie)

mgitaly.it

EN

MG philosophy:

"Competition is not about what companies produce, but about what they are able to add to the product"

Index

Company, Mission & Vision			04
Company Quality, Experience & Expertise			05
Company Profile, Structure & Partnership	06	-	07
Business Unit	80	-	11
Extruded technology	13	-	40
Welded technology	41	-	47
Assembled technology	48	-	61
"HEATPLUS" technology	62	-	67
ColdPlate technology	68	-	69
Dissipation technology MGSKIVED	70	-	71
PV fasteners	72	-	84
Processes – Machining	85	-	87

Leading group in mechanical machining and automation worldwide. Over the years, our group has remained fully committed to being a top-level manufacturer in high-precision machining and high-quality electromechanical components.

MG develops and produces heat dissipation systems with different technologies, air, liquid, and many others. Our organization is engaged in different sectors: Continuous Facades, Furniture, Transportation, Cooling Company, Automotive, Electronics, Civil and Military Defence, Design Lighting, Motors, Aerospace, Photovoltaic, many others.

Our group today covers an area of 4,000 square meters with over 100 operators and employees and operates in the sector of precision machining for industries of various sectors making use of constantly updated infrastructures and production plants.

Experience and Expertise

Technical expertise at the service of our customer

Our technical staff, thanks to their considerable experience, will be able to deal reactively and with excellent quality and innovative solutions for any of your needs.

A unique service that has allowed us, over the years, to attract the attention of companies on a global level as well.

Our organization is in continuous development, in a continuous search to improve each of its processes.

Our Top Management is continuously and systematically involved in the implementation, maintenance, development and improvement of the Quality Management System.

In Quality Management System (QMS) which allows to guarantee the achievement of the set objectives and customer satisfaction, in compliance with the applicable reference Standards and Directives, as well as with the specific contractual requirements.

OUR BASIC PRINCIPLES

- Satisfaction and focus on customer needs
- Always improving products and services offered
- Compliance with the requirements specified by customers
- Compliance with ASD customer requirements

- Compliance with workplace safety regulations
- High healthy and safety standards and regulations
- 🖌 ISO 9001 QMS
- International Management System

COMPANY PROFILE

In 40 years we have developed an extraordinary set of skills accompanied by the typical commitment of those who want to be leaders and always placing the customer and their needs at the center of their business decisions, we have worked hard to obtain gratifying results both professionally and socially with particular regarding environmental protection.

On these premises, the company management has invested considerable energy to instill a new corporate culture understood as a consolidated and widespread practice in all sectors of the company. An ethical culture whose fundamental pillars are found in the values that have always distinguished our Company.

Company Structure

- Technical ability of operators to identify customer problems
- Many years of knowledge based on continuous technical updating and on maintaining high quality standards
- International team, English, German, Spanish and Russian native speakers
- Technical personnel with a notable and consolidated background gained through multiple and heterogeneous experiences in diversified sectors
- Carefully selected suppliers, according to a production chain system

International partners, we are present in foreign markets

We have many years of knowledge based on continuous technical updating and on maintaining high quality standards in order to ensure high corporate competitiveness. The company management has thought of a flexible and adequate structure built according to the suggestions of the customers to better assist them.

Business Unit

Our main strength is our highly qualified personnel who, having the latest generation machinery, the result of constant investments, are able to achieve increasingly stringent quality standards.

The continuous refinement of production technologies, combined with the experience gained in more than forty years of mechanical machining, makes the company the ideal partner for customers operating in different application sectors.

FLEXIBLE BUSBARS

Round, tubular and flat copper braids are an extra flexible conductor for all electrical connection needs, including power, earth and equipotential connections.

The new copper-insulated flexible bar, produced in a new and advanced production plant, is the only flexible bar and stands out, through the innovative features, for its high flexibility, excellent appearance and easy use.

The "barrel" insulator is used as an insulating support for active conductors, a support for electrical equipment, a spacer and/or stiffening element of a system made up of conductor bars (in copper and/or aluminium).

RIGID BUSBARS

In our Electronics division, we make all the connection components in copper and not only. The materials are chosen according to the needs each project.

We have various busbar solutions, which are designed together with our customers. Each project is created according to your needs.

Business Unit: **DIE CASTING**

We operate in the aluminum die-casting sector and thanks to the great experience accumulated over the last few decades, we offer a complete service, from the creation of the mold to the supply of the machined and tested piece.

We are able to collect all the requests from our customers, having the possibility of carrying out mechanical machining on die-cast parts, as well as performing aesthetic finishes.

Often, the customer prefers to commission the finishing activity, both to speed up the timing of the process and to have a single contact person and therefore not having to personally follow each phase.

Our Company is able to supply die-casting of any type of aluminum alloy.

In addition to the most used alloys (EN AB-43400, EN AB- 44300, EN AB-46000, EN AB-46100, EN AB-47100), we can use special alloys such as Silafont 36. All the molten aluminum in the central melting furnaces is then subjected to a degassing and slagging treatment with nitrogen and salts.

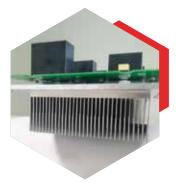
Business Unit: METAL PLATES

3 fiber laser systems with automatic loading and unloading and 2 punching machines:

- 1 Amada LCG-AJ 6KW laser cutting machine with automated warehouse
- 1 Amada ENSIS 3015 AJ 2KW laser cutting machine with automated warehouse
- 1 Trumpf TruLaser 5030 fiber (L76) laser cutting machine with automated warehouse
- 1 Trumpf 3000 punching machine with bar loading and unloading bench
- 1 Rainer punching machine

Bending:

- 6 bending press brakes
- 1 automatic panel bender with flag bending system
- 1 HG ATC ARS Amada robotic bending cell
- 1 Starmatick robotic bending cell


Business Unit: INDUSTRIES

This division deals with mechanical machining on CNC Milling and Turning centers, based on the executive drawings provided by our customers or by our technical office.

The machinery present in our production lines are all of the latest generation and constantly updated to guarantee high-performance and competitive processes on the market.

The entire production process is monitored through our operational processes that allow you to have quality and timing control on all productions.

Further information can be found on our website www.mgitaly.it

Business Unit: ELECTRONICS

EXTRUDED

We are one of the world's leading manufacturers of aluminum heat sinks. Our main activities include the study, design and development of profiles aimed at the creation of finished products.

Innovative and flexible, we are able to provide customized solutions for any type of application. We produce extruded heat sinks, assembled, according to the requests of our customers.

We have been developing new ideas for over 40 years and our product range includes more than a thousand extruded aluminum profiles and more than 20,000 finished products. You can find out more about these aspects on our website: www.mgitaly.it

Cold_Plate

The COLD_PLATE solution is the optimal solution for efficiently managing complex systems with high concentrated powers. Water cooling is thus becoming the ideal alternative for dissipating high powers. This system avoids noise and problems due to vibrations, considering that this dissipation system can also be used in dusty environments where forced air cannot be used.

Business Unit: WELDINGS

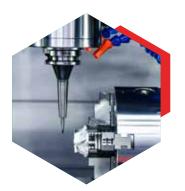
Laser, tig, mig/mag and a dedicated robot for high quality welding services.

- 1 Welding Robot
- TIG & MIG welding machines

Business Unit: Plastic materials

Plastic materials for electrical insulators and mechanical components

Once in operation, every plant requires a powerful and reliable electrical system. Generators, transformers and switchboards must always be coordinated with the expected performance and structure of the installation. We help you in the construction with our thermosetting semi-finished products, which have been used in the electrical industry all over the world for over 40 years. Highly resistant to electrical, mechanical and thermal loads, with our materials you develop generators, transformers and switchboards with high operational safety.


Your benefits

High operational safety - Long duration - Low flammability - High electrical stability - High mechanical stability - High thermal resistance

Application

Electrical systems High power systems Energy cooling systems, UPS, Systems with high operating temperatures.

Used materials:
Gpo3
Pvc
Lexan
Vetronite

Business Unit: MILLING

With a fleet of over 15 high-level machining centres, MG proposes itself as prime contractor for carrying out mechanical machining to customer drawings, in order to guarantee the production of high precision parts with limited time and cost.

All CNC machines are always manned by assigned personnel who are exclusively responsible for the good execution and dimensional control of the product they are making.

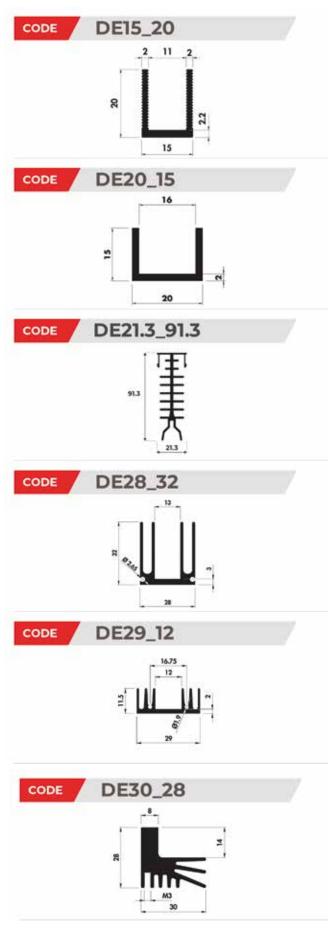
To make this way of working possible, the department heads supervise the production cycle, while other qualified personnel carry out some necessary and fundamental operations.

Business Unit: **TURNING**

In the field of high precision machining, MG also offers CNC turning service. We have state-of-the-art CNC turning machines.

Thanks to the computerized detection of work phases, the company can guarantee constant realtime control of the progress of production, together with the immediate traceability of the processes carried out or still in progress.

EXTRUDED TECHNOLOGY


The aluminum extrusion process makes it possible to obtain profiles of infinite, even complex shapes.

By varying the shape of the profile, changing the contact surface with the air and, consequently, the dissipation capacity.

By varying the shape of the profile, changing the contact surface with the air and, consequently, the dissipation capacity. The extruded heat sinks are presented subdivided by shape (T, H, L, K, E, U, P), width and height, and organized in increasing order of size. MG follows mechanical processes following the customer's requests, guaranteeing reliability and quality of the finished product.

Kg/mt	0.25 Kg/mt
L	15 mm
н	20 mm
Rth,F	4.750 K/W
Rth,N	14.10 K/W
Alloy	6061
Kg/mt	0.24 Kg/mt
L	20 mm
T	2011111
н	5.590 K/W
	5.590 K/W 16.60 K/W
H Rth,F Rth,N	

Kg/mt	1.898	
L	21.3 mm	
н	91.3 mm	
Alloy	6061	

Kg/mt	0.73 Kg/mt	
L	28 mm	
н	32 mm	
Rth,F	2.650 K/W	
Rth,N	7.80 K/W	
Alloy	6061	

Kg/mt	0.35 Kg/mt	
L	29 mm	
н	11.50 mm	
Rth,F	3.850 K/W	
Rth,N	11.50 K/W	
Alloy	6061	

Kg/mt	0.98 Kg/mt	
L	30 mm	
н	28 mm	
Rth,F	2.889 K/W	
Rth,N	9.30 K/W	
Alloy	6061	

Technology: EXTRUDED

EXTRUDED TECHNOLOGY

TECHNOLOGY WELDING

ASSEMBLED TECHNOLOGY

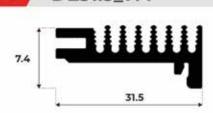
HEATPLUS TECHNOLOGY

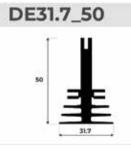
COLDPLATE TECHNOLOGY

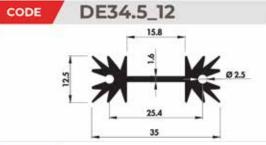
PV PROFILES

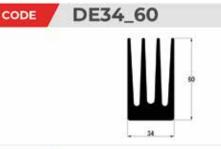
•7	Kg/mt	1,3 Kg/mt	
91111	L	30 mm	
	н	47 mm	
	Rth,F	4.29 K/W	
	Rth,N	2.99 K/W	
47	Alloy	6060	
7.4			
	Kg/mt	5.068 Kg/mt	
	L	31.5 mm	
	н	7.4 mm	
31.5	Alloy	6061	
50	Kg/mt	1.161 Kg/mt	
U	L	31.7 mm	
	н	50 mm	
	Rth,F	1.86 K/W	
-	Rth,N	5.6 K/W	
51.7	Alloy	6061	
10			
_12	Kg/mt	0.43 Kg/mt	
	L	34.5 mm	
	н	12.50 mm	
02.5	Rth,F	3.450 K/W	
	Rth,N	10.20 K/W	
35	Alloy	6061	
60			
	Kg/mt	2.84 Kg/mt	
	L	34 mm	
	н	60 mm	
60	Rth,F	1.170 K/W	
	Rth,N	3.50 K/W	
34	Alloy	6061	
4			
4	Kg/mt	2 Kg/mt	
25	L	35 mm	
35 25 7	н	44 mm	
	Rth,F	1.880 K/W	
5	Rth,N	5.60 K/W	

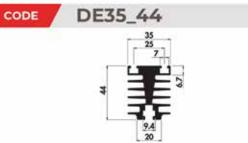
Alloy


6061

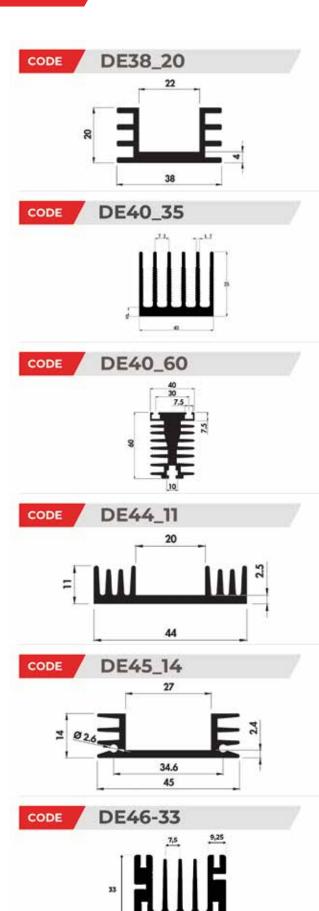





CODE


CODE

15

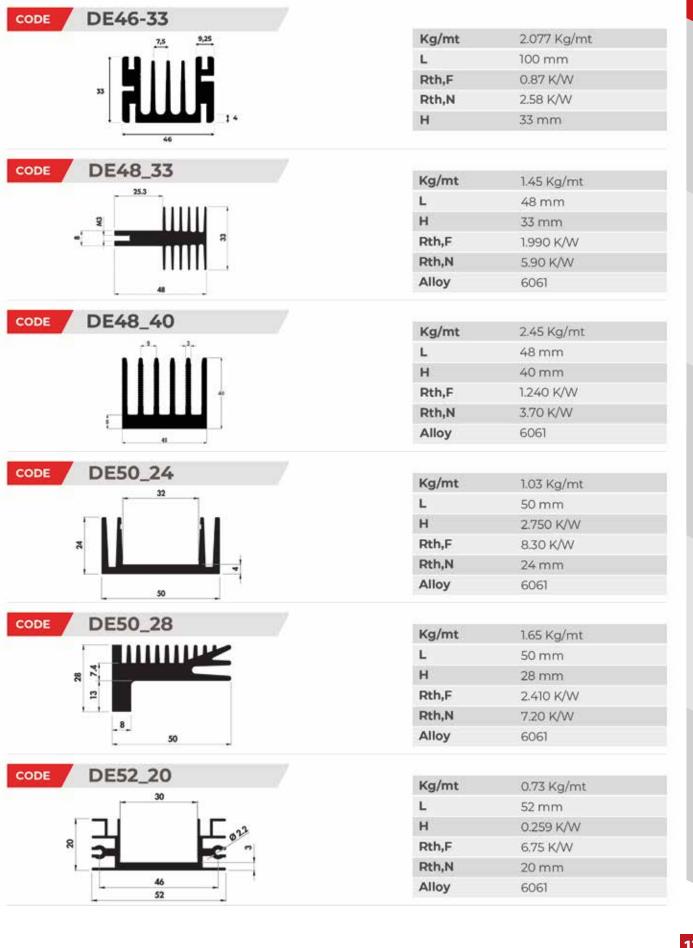


0.71 Kg/mt

38 mm

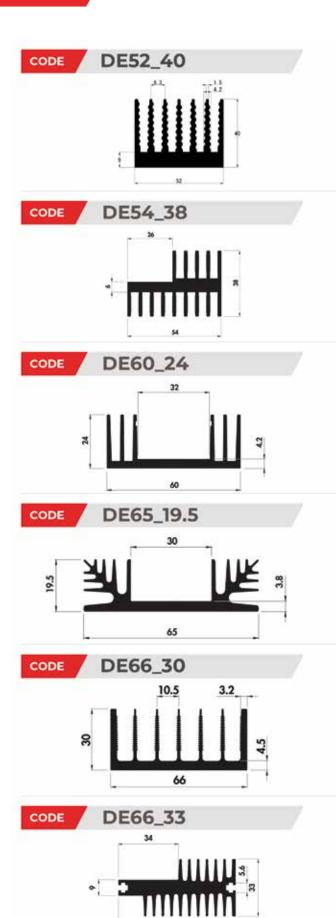
Kg/mt

L



-	38 mm	
н	20 mm	
Rth,F	3.250 K/W	
Rth,N	9.50 K/W	
Alloy	6061	
Kg/mt	1.73 Kg/mt	
L	40 mm	
н	35 mm	
Rth,F	1.17 K/W	
Rth,N	3.50 K/W	
Alloy	6061	
		_
Kg/mt	3.41 Kg/mt	
L	40 mm	
н	1.450 K/W	
Rth,F	4.30 K/W	
Rth,N	60 mm	
Alloy	6061	
Kg/mt	0.56 Kg/mt	
L	44 mm	
н	11 mm	
Rth,F		
	3.250 K/W	
Rth,N	9.09 K/W	
Alloy	6061	
Kg/mt	0.55 Kg/mt	
L	45 mm	
н	14 mm	
Rth,F	3.210 K/W	
Rth,N	9.70 K/W	
Alloy	6061	
Kg/mt	2.077 Kg/mt	
L	100 mm	
Rth,F	0.87 K/W	
Rth,N	2.58 K/W	
н	33 mm	

Technology: **EXTRUDED**



WELDING

66

Kg/mt	2.79 Kg/mt
L	52 mm
н	40 mm
Rth,F	1.050 K/W
Rth,N	3.10 K/W
Alloy	6061
Kg/mt	2.20 Kg/mt
L	54 mm
н	38 mm
Rth,F	4.50 K/W
Rth,N	4.50 K/W
Alloy	6061
Kg/mt	1.22 Kg/mt
L	60 mm
н	2.210 K/W
Rth,F	6.03 K/W
Rth,N	24 mm
Alloy	6061
Kg/mt	1.25 Kg/mt
L	65 mm
н	1.989 K/W
Rth,F	5.85 K/W
Rth,N	19.50 mm
Alloy	6061
Kg/mt	1,742 Kg/mt
L	66 mm
Rth,F	0,99 K/W
Rth,N	2,9 K/W

Kg/mt	2.43 Kg/mt	
L	66 mm	
н	33 mm	
Rth,F	1.480 K/W	
Rth,N	4.40 K/W	
Alloy	6061	

30 mm

н

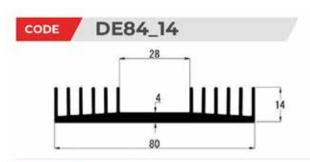
Technology: EXTRUDED

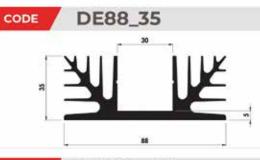
EXTRUDED TECHNOLOGY

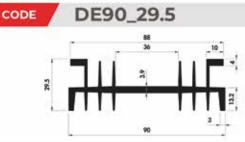
WELDING TECHNOLOGY

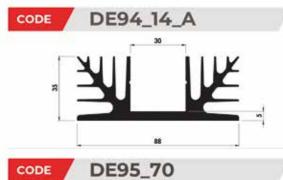
ASSEMBLED TECHNOLOGY

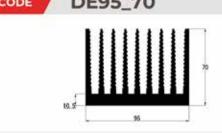
COLDPLATE TECHNOLOGY


PV PROFILES


DE66_40			
	Kg/mt	3.47 Kg/mt	
	L	66 mm	
	н	40 mm	
The second se	Rth,F	0.990 K/W	
10	Rth,N	3.10 K/W	
66	Alloy	6061	
DE68_90			
68	Kg/mt	8,66 Kg/mt	
	L	68 mm	
	Rth,F	0.411 K/W	
90	Rth,N	1.22 K/W	
	н	90 mm	
DE70_132	Kalmt	17.00 Kalmt	
	Kg/mt	13.22 Kg/mt	
	L	70 mm	
E	Rth,F	132 mm	
	Rth,N	0.830 K/W	
₩	Alloy	2.25 K/W 6061	
	Anoy	0001	
DE80_14	Kg/mt	1.18 Kg/mt	Ľ,
27.4	L	80 mm	
<u>z</u>	н	14 mm	
	Rth,F	1.395 K/W	
80	Rth,N	4.05 K/W	
k∎ (2000)	Alloy	6061	
DE00 3/			
DE80_24	Kg/mt	1.72 Kg/mt	
32	L	80 mm	
	н	24 mm	
2	Rth,F	1.830 K/W	
	Rth,N	5.40 K/W	
80	Alloy	6061	
DE DE82_32	Kg/mt	2.99 Kg/mt	
1.8	L	82 mm	
	н	32 mm	
	Rth,F	0.670 K/W	
	Rth,N	2.60 K/W	
5.7	Alloy	6061	


19




Technology: **EXTRUDED**

DE96.5_25

Kg/mt	1,95 Kg/mt	
L	80 mm	
Rth,F	3,45 K/W	
Rth,N	10,2 K/W	
н	14 mm	
Alloy	6060	
Kg/mt	2.80 Kg/mt	
L	88 mm	
н	35 mm	
Rth,F	1.395 K/W	
Rth,N	4.05 K/W	
Alloy	6061	
Kg/mt	1.86 Kg/mt	
L	90 mm	
н		
Rth,F	29.50 mm 1.650 K/W	
Rth,N	4.90 K/W	
Alloy	6061	
Kg/mt	16/ Valat	
L	1.64 Kg/mt 94 mm	
н	14.50 mm	
Rth,F	1.629 K/W	
Rth,N	4.86 K/W	
Alloy	6061	
Kg/mt	7.25 Kg/mt	
L	95 mm	
н	70 mm	
Rth,F	0.580 K/W	
Rth,N	1.70 K/W	
Alloy	6061	

Kg/mt	3,934 Kg/mt
L	96,5 mm
н	25 mm
Rth,F	0,594 K/W
Rth,N	1,78 K/W

CODE

CODE

CODE

CODE

CODE

CODE

25

25.5

Technology: EXTRUDED

EXTRUDED TECHNOLOGY

WELDING TECHNOLOGY

ASSEMBLED TECHNOLOGY

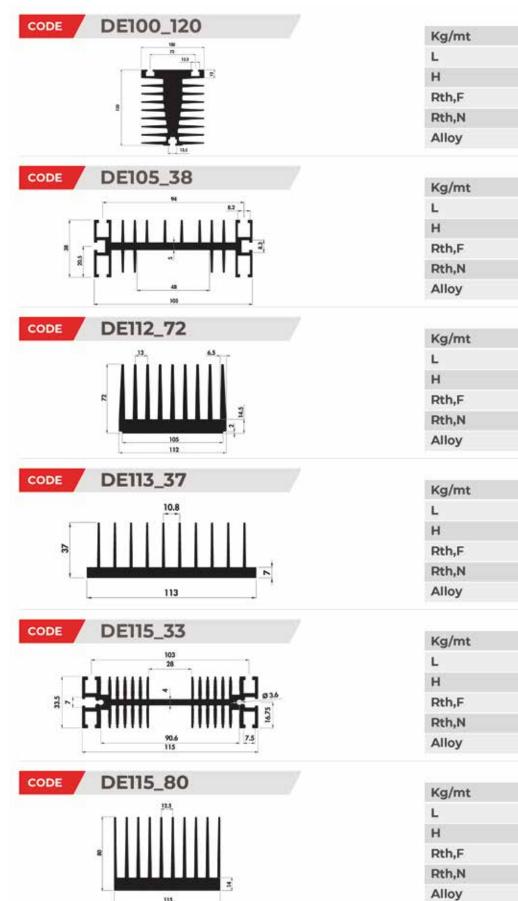
HEATPLUS TECHNOLOGY

COLDPLATE TECHNOLOGY

PV PROFILES

DE97_25.5	Kg/mt
6 22 ↔ ¹	L
	н
	Rth,F
1 6.5	Rth,N
97	Alloy
DE100 15	
DE100_15	Kg/mt
1239	L
5.0 1.5	н
	Rth,F
5003	Rth,N
	Alloy
DE100_25	
DE100_25	Kg/mt
7 <u>1.5</u>	L
	н
	Rth,F
3 4	Rth,N
100	Alloy
DE100_40	
10 6	Kg/mt
	L
	н
	Rth,F
e 1 and a second	Rth,N
· 100	Alloy
DE100_50	
20	Kg/mt
	L
	н
	Rth,F
	Rth,N
100	Alloy
DE100_95.2	0.000
······································	Kg/mt
	L
952	н
	Rth,F
	Rth,N
100	Alloy

Kg/mt	3.40 Kg/mt
L	97 mm
н	25.5 mm
Rth,F	0.423 K/W
Rth,N	1.25 K/W
Alloy	6061
Kg/mt	2.16 Kg/mt
L	100 mm
н	15 mm
Rth,F	1.020 K/W
Rth,N	3.10 K/W
Alloy	6061
Kg/mt	2.66 Kg/mt
L	100 mm
н	25 mm
Rth,F	0.484 K/W
Rth,N	1.43 K/W
Alloy	6061
Kg/mt	5.12 Kg/mt
L	100 mm
н	0.401 K/W
Rth,F	1.19 K/W
Rth,N	40 mm
Alloy	6061
Kg/mt	4.90 Kg/mt
L	100 mm
н	50 mm
Rth,F	1.125 K/W
Rth,N	3.24 K/W
Alloy	6061
14 1	
Kg/mt	8.548 Kg/mt
L	100 mm
H	95.2 mm
Rth,F	0.47 K/W
Rth,N	1.4 K/W


6061

15.64 Kg/mt

100 mm

-	10011111	
н	120 mm	
Rth,F	0.790 K/W	
Rth,N	2.30 K/W	
Alloy	6061	
Kg/mt	2.83 Kg/mt	
L	105 mm	
н	38 mm	
Rth,F	1.210 K/W	
Rth,N	3.60 K/W	
Alloy	6061	
Kg/mt	9.81 Kg/mt	
L	112 mm	
н	72 mm	
Rth,F	0.590 K/W	
Rth,N	1.62 K/W	
Alloy	6061	
Kg/mt	3.43 Kg/mt	
L	113 mm	
н	37 mm	
Rth,F	0.790 K/W	
Rth,N	2.30 K/W	
Alloy	6061	
Kg/mt	3.83 Kg/mt	
L	115 mm	
н	33.50 mm	
Rth,F	0.880 K/W	
Rth,N	2.43 K/W	
Alloy	6061	

Kg/mt	9.52 Kg/mt	
L	115 mm	
н	80 mm	
Rth,F	0.510 K/W	
Rth,N	1.50 K/W	
Alloy	6061	

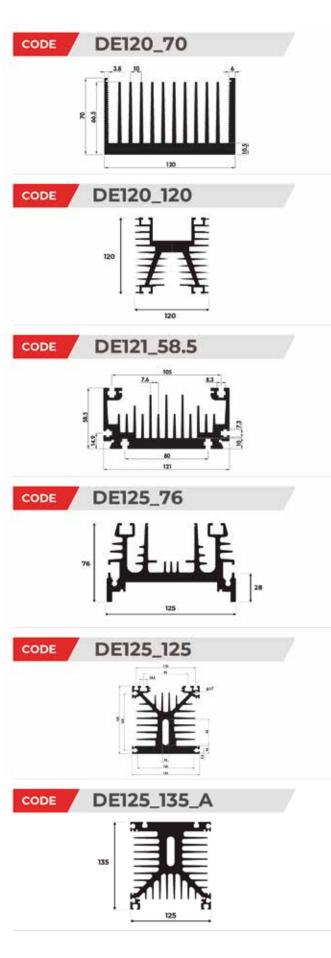
Technology: **EXTRUDED**

EXTRUDED TECHNOLOGY

WELDING

ASSEMBLED TECHNOLOGY

HEATPLUS TECHNOLOGY


COLDPLATE TECHNOLOGY

PV PROFILES

DE120_40		
	Kg/mt	6.70 Kg/mt
1530	L	120 mm
	н	40 mm
	Rth,F	0.620 K/W
	Rth,N	1.71 K/W
120	Alloy	6061
DE120_40_A	Kg/mt	6.51 Kg/mt
10 4.8	L	120 mm
	н	40 mm
9	Rth,F	0.610 K/W
2 2	Rth,N	1.71 K/W
<u>الا المعامة ا</u>	Alloy	6061
120	Alloy	
DE120_60	Kg/mt	8.37 Kg/mt
152,11.2 4	L	120 mm
	н	60 mm
8	Rth,F	0.580 K/W
	Rth,N	1.70 K/W
	Alloy	6061
DE DE120_60_B		
	Kg/mt	7.29 Kg/mt
	L	120 mm
	н	60 mm
* 	Rth,F	0.560 K/W
	Rth,N	1.70 K/W
120	Alloy	6061
DE120_63		
د	Kg/mt	8.39 Kg/mt
	L	120 mm
	н	63 mm
3	Rth,F	0.540 K/W
2	Rth,N	60 K/W
120	Alloy	6061
DE120_64	Kg/mt	i on kalan
34		4.97 Kg/mt
	L	120 mm
2		64 mm
₃ 	Rth,F	1.010 K/W
	Rth,N	2.79 K/W
	Alloy	6061

Kg/mt	8.96 Kg/mt	
L	120 mm	
н	70 mm	
Rth,F	0.410 K/W	
Rth,N	1.20 K/W	
Alloy	6061	
Kg/mt	11.19 Kg/mt	
L	120 mm	
н	120 mm	
Rth,F	0.251 K/W	
Rth,N	0.74 K/W	
Alloy	6061	
Kg/mt	7.13 Kg/mt	
L	121 mm	
н	58.50 mm	
Rth,F	0.580 K/W	
Rth,N	1.70 K/W	
Alloy	6061	
Kg/mt	7.081 Kg/mt	
L	125 mm	
н	76 mm	
Rth,F	0.275 K/W	
Rth,N	0.84 K/W	
Alloy	6061	
Kg/mt	15.53 Kg/mt	
L	125 mm	
н	125 mm	
Rth,F	0.390 K/W	
Rth,N	1.08 K/W	
	1.00 10 10	

Kg/mt	17.61 Kg/mt
L	125 mm
н	135 mm
Rth,F	0.168 K/W
Rth,N	0.50 K/W
Alloy	6061

6061

Alloy

COD

COD

COD

COD

COD

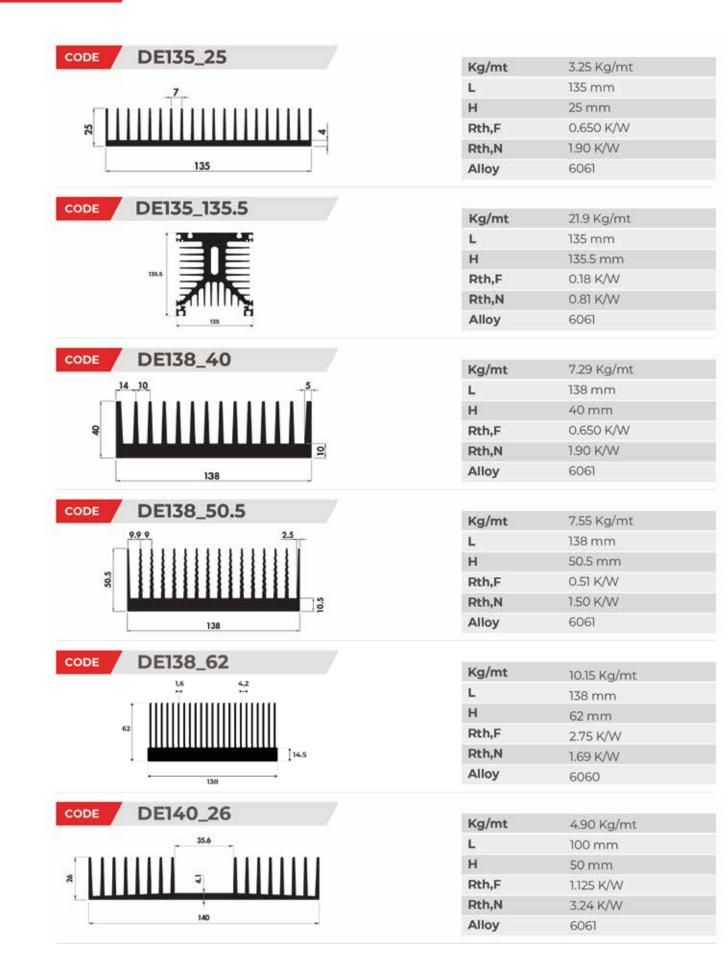
COD

Technology: EXTRUDED

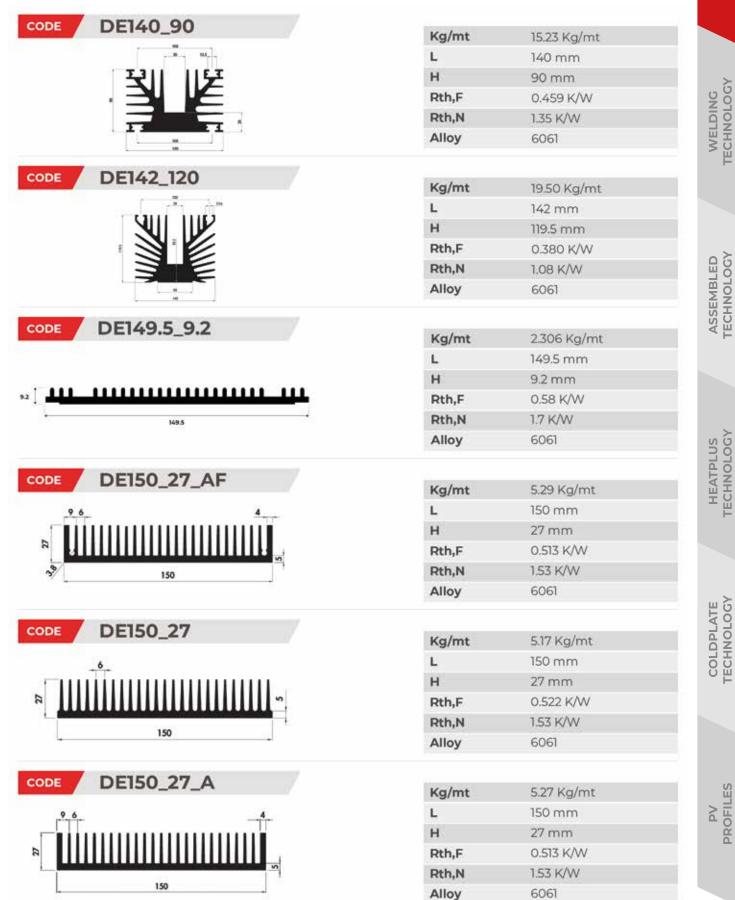
EXTRUDED TECHNOLOGY

WELDING TECHNOLOGY

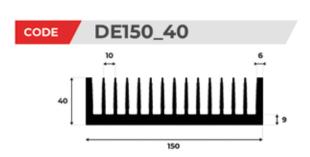
ASSEMBLED TECHNOLOGY

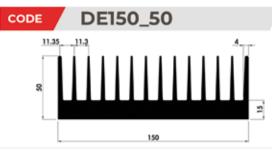

COLDPLATE TECHNOLOGY

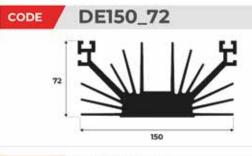
PV PROFILES

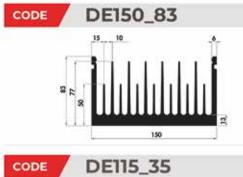

	Kg/mt	1/9 Kd/mt
The second se	E.	17.9 Kg/mt 125 mm
	н	135 mm
135	Rth,F	0.38 K/W
1.3	Rth,N	1.10 K/W
125	Alloy	6061
DE126_63.5	Kg/mt	0 27 1/- /
122	L	8.21 Kg/mt
36 39.5	н	126 mm
		63.5 mm
	Rth,F	0.549 K/W
	Rth,N	1.62 K/W
40 136	Alloy	6061
DE128_57	Marland	PARK I.
128	Kg/mt	5.95 Kg/mt
	L	128 mm
	H	57 mm
	Rth,F	0.522 K/W
	Rth,N	1.53 K/W
48 2	Alloy	6061
DE130_52	Kalmat	22201/-/
. 27	Kg/mt	11.18 Kg/mt
	L	130 mm
	H	0.558 K/W
	Rth,F	1.75 K/W
	Rth,N	52 mm
130	Alloy	6061
DE130_84	15-los	17 // // /
142	Kg/mt	13.44 Kg/mt
	L	130 mm
	н	84 mm
*	Rth,F	0.470 K/W
2	Rth,N	1.26 K/W
130	Alloy	6061
DE130_130		
34	Kg/mt	12.26 Kg/mt
	L	130 mm
	н	130 mm
₃ ₽₽₽₽≕ ₽₽₽₽	Rth,F	0.680 K/W
	Rth,N	1.89 K/W
	Alloy	6061

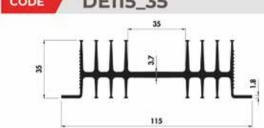
Technology: **EXTRUDED**




Technology: **EXTRUDED**




Technology: EXTRUDED



7.42 Kg/mt
150 mm
40 mm
0.299 K/W
0.68 K/W
6061

Kg/mt	9.58 Kg/mt
L	150 mm
н	50 mm
Rth,F	0.580 K/W
Rth,N	1.70 K/W
Alloy	6061

Kg/mt	12.33 Kg/mt
L	150 mm
н	62 mm
Rth,F	0.252 K/W
Rth,N	0.73 K/W
Alloy	6061

Kg/mt	8.934 Kg/mt	
L	150 mm	
н	72 mm	
Rth,F	0.69 K/W	
Rth,N	1.89 K/W	
Alloy	6061	

Kg/mt	12.33 Kg/mt	
L	150 mm	
н	83 mm	
Rth,F	0.460 K/W	
Rth,N	1.26 K/W	
Alloy	6061	

Kg/mt	2.15 Kg/mt	
L	115 mm	
н	35 mm	
Rth,F	1.350 K/W	
Rth,N	3.69 K/W	
Alloy	6061	

Technology: EXTRUDED

8.64 Kg/mt

160 mm

40 mm

0.281 K/W

0.64 K/W

Kg/mt

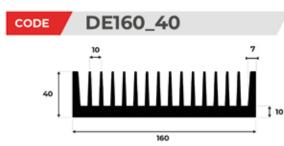
Rth,F

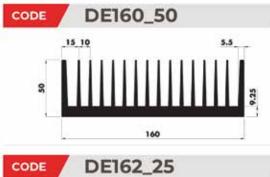
Rth,N

L

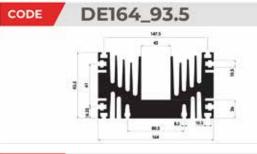
н

EXTRUDED TECHNOLOGY

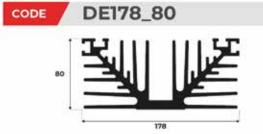

WELDING TECHNOLOGY

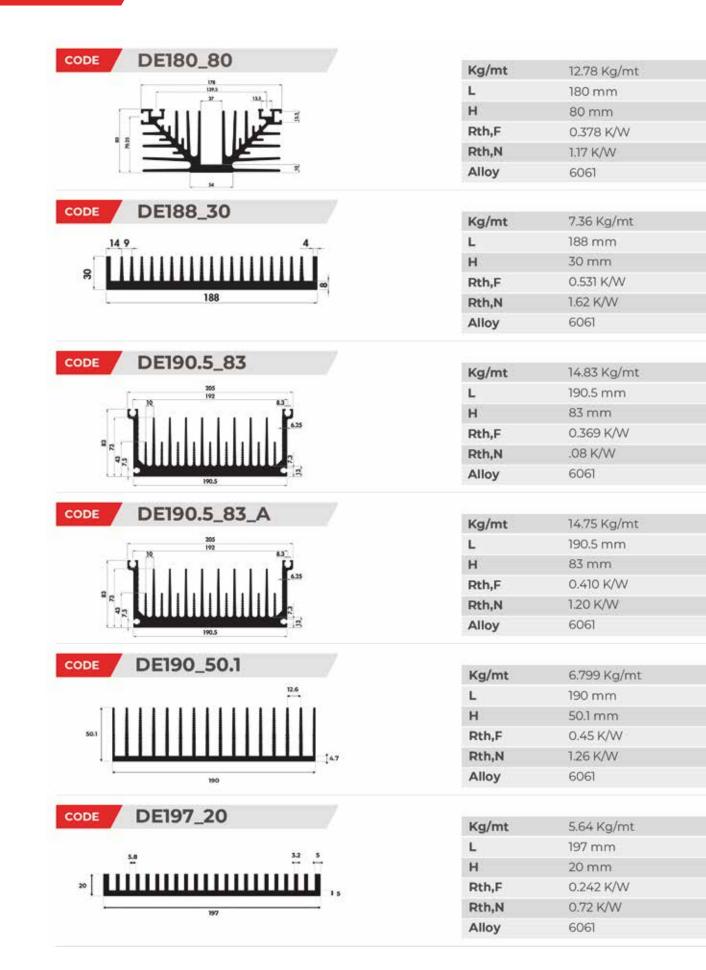

ASSEMBLED TECHNOLOGY

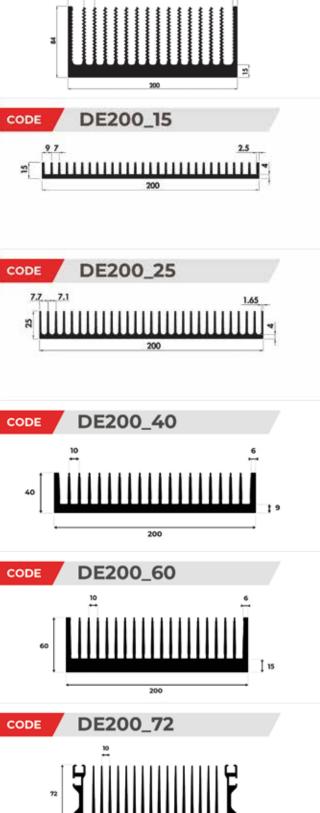
COLDPLATE TECHNOLOGY


PV PROFILES

`	Alloy	6061
7		
	Kg/mt	8.86 Kg/mt
5.5	L	160 mm
11111	н	50 mm
6.25	Rth,F	0.459 K/W
i i i i i i i i i i i i i i i i i i i	Rth,N	1.35 K/W
	Alloy	6061
7		
	Kg/mt	5.23 Kg/mt
4	L	162 mm
 g	н	25 mm
	Rth,F	0.531 K/W
	Rth,N	1.62 K/W
	Alloy	6061
.5		
	Kg/mt	19 Kg/mt
	L	164 mm
	н	93.5 mm
	Rth,F	0.405 K/W
	Rth,N	1.17 K/W
	Alloy	6061
	Kg/mt	4.22 Kg/mt
2.8	L	173 mm
	н	28 mm
	Rth,F	0.369 K/W
,	Rth,N	1.08 K/W
	Alloy	6061
	Kg/mt	12.782 Kg/mt
1150	L	178 mm
	н	80 mm
	Rth,F	0.370 K/W
	Rth,N	1.08 K/W
	Alloy	6061



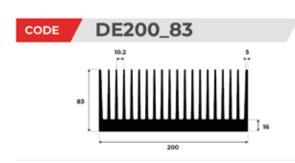

CODE DE173_28

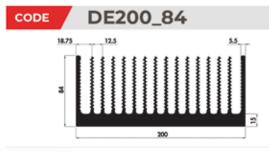


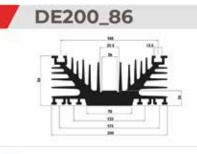
Technology: EXTRUDED

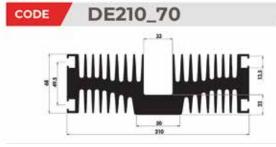
EXTRUDED TECHNOLOGY

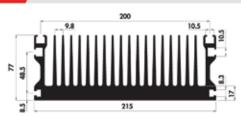
	Kg/mt	17.74 Kg/mt	
35 T	L	200 mm	
	н	84 mm	≻
	Rth,F	0.279 K/W	200
	Rth,N	0.90 K/W	
2	Alloy	6061	
			TEV
	Kg/mt	3.90 Kg/mt	
2.5	L	200 mm	
11111	н	15 mm	
	Rth,F	0.621 K/W	
	Rth,N	1.89 K/W	ΩĞ
	Alloy	6061	BLE
	Anoy	0001	μNO
			ASSEMBLED TECHNOLOGY
	Kg/mt	5.38 Kg/mt	ΥĒ
1.65	L	200 mm	
4	н	25 mm	
	Rth,F	0.477 K/W	
	Rth,N	1.50 K/W	
	Alloy	6061	JS Q
			HEATPLUS TECHNOLOGY
	Kg/mt	9.72 Kg/mt	HN
6	L	200 mm	ΗÜ
	н	40 mm	-
	Rth,F	0.154 K/W	
111 19	Rth,N	0.46 K/W	
	Alloy	6061	
	,		ЩС
			COLDPLATE TECHNOLOGY
	Kg/mt	15.16 Kg/mt	A A
	L	200 mm	EC C
	н	60 mm	Ē
	Rth,F	0.121 K/W	
15	Rth,N	0.36 K/W	
	Alloy	6061	
	Kg/mt	14.53 Kg/mt	ES
	L	200 mm	PV PROFILES
18	н	72 mm	RO
Y	Rth,F	0.130 K/W	<u>L</u>
1 10	Rth,N	0.38 K/W	
	Alloy	6061	
	-		

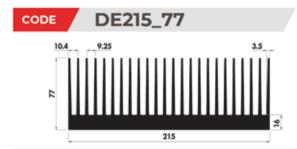

200


DE200_84


CODE


18.75





CODE

CODE

DE215_77

Kg/mt	19.9 Kg/mt
L	200 mm
н	83 mm
Rth,F	0.119 K/W
Rth,N	0.35 K/W
Alloy	6061

Kg/mt	17.74 Kg/mt
L	200 mm
н	84 mm
Rth,F	0.279 K/W
Rth,N	0.90 K/W
Alloy	6061

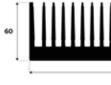
Kg/mt	19.17 Kg/mt	
L	200 mm	
н	86 mm	
Rth,F	1.17 K/W	
Rth,N	1.20 K/W	
Alloy	6061	

Kg/mt	19.99 Kg/mt	
L	210 mm	
н	68 mm	
Rth,F	0.369 K/W	
Rth,N	1.08 K/W	
Alloy	6061	
T.		

Kg/mt	22.15 Kg/mt
L	215 mm
н	77 mm
Rth,F	0.330 K/W
Rth,N	0.88 K/W
Alloy	6061

Kg/mt	19.80 Kg/mt
L	215 mm
н	77 mm
Rth,F	0.279 K/W
Rth,N	0.81 K/W
Alloy	6061

Technology: EXTRUDED


EXTRUDED TECHNOLOGY

ECHNOLOG

ECHNOLOG

DE216_77			
	Kg/mt	24 Kg/mt	
	L	216 mm	
	н	77 mm	≻
	Rth,F	0.297 K/W	NO N
	Rth,N	0.88 K/W	
216	Alloy	6061	WELDING
5016 07			
DE216_83	Kg/mt	18.06 Kg/mt	
	L	216 mm	
	н	83 mm	
	Rth,F	0.324 K/W	
	Rth,N	0.99 K/W	D D D
216	Alloy	6061	0L0
	-		ASSEMBLED
DE220_46.5		33.077.1/	AS: TEC
	Kg/mt	11.27 Kg/mt	
][^{**}]•	L	220 mm	
	н	46.5 mm	
	Rth,F	0.378 K/W	
-3,	Rth,N	1.17 K/W	
130	Alloy	6061	US DG
			DLO
E220_60	Kg/mt	16.719 Kg/mt	HEATPLUS TECHNOLOGY
10	L	220 mm	포원
	н	60 mm	
	Rth,F	0.36 K/W	
14	Rth,N	0.39 K/W	
	Alloy	6061	
220			빌상
DE220_77			COLDPLATE
207.5	Kg/mt	17.54 Kg/mt	Å Å
83	L	220 mm	Ū Ū
	н	77 mm	F
	Rth,F	0.351 K/W	
	Rth,N	1.08 K/W	
220	Alloy	6061	
DE226_80	Kg/mt	23.74 Kg/mt	S
41	L	23.74 Kg/mt 226 mm	PV PROFILES
	н		P OS
	Rth,F	0.369 K/W	ā
	Rth,N	1.08 K/W	
	Alloy	80 mm	
226	Alloy	6061	

33

D

CODE

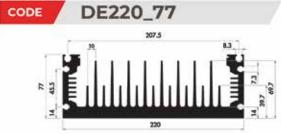
2

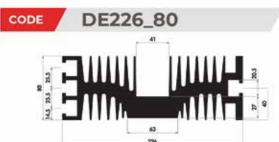
CODE

CODE

3

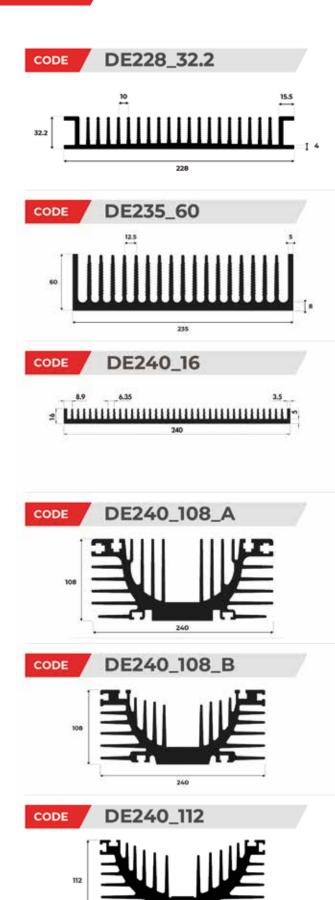
CODE


2


D

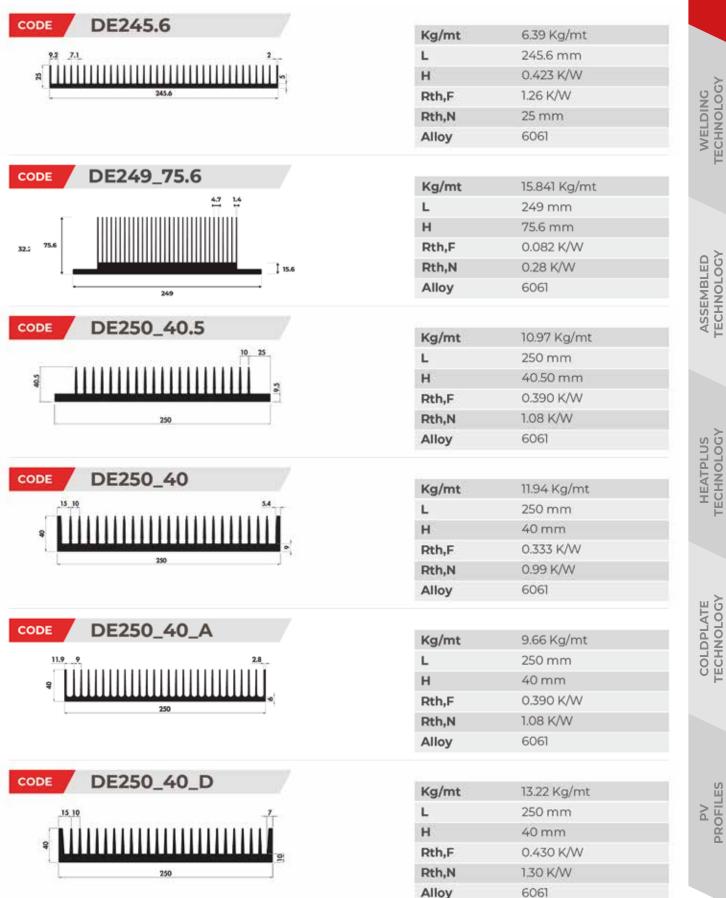
D

D


9.8

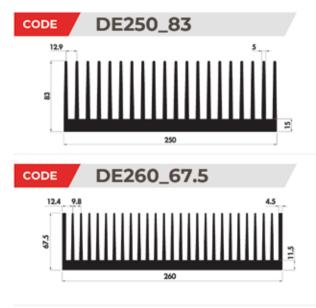
32 Kg/mt
8 mm
2 mm
50 K/W
43 K/W
61

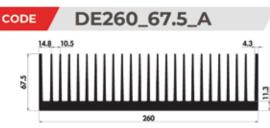
Kg/mt	14.893 Kg/mt
L	235 mm
н	60 mm
Rth,F	0.310 K/W
Rth,N	0.9 K/W
Alloy	6061

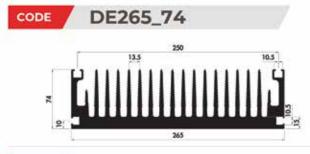

Kg/mt	5.57 Kg/mt	
L	240 mm	
н	16 mm	
Rth,F	0.531 K/W	
Rth,N	1.62 K/W	
Alloy	6061	

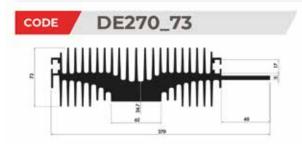
Kg/mt	25.056 Kg/mt	
L	240mm	
н	108 mm	
Rth,F	0.324 K/W	
Rth,N	0.99 K/W	
Alloy	6061	

26.101 Kg/mt	
240mm	
108 mm	
0.324 K/W	
0.99 K/W	
6061	
	240mm 108 mm 0.324 K/W 0.99 K/W


Kg/mt	29.824 Kg/mt
L	240mm
н	112 mm
Rth,F	0.345 K/W
Rth,N	1.05 K/W
Alloy	6061


Technology: **EXTRUDED**




Technology: EXTRUDED

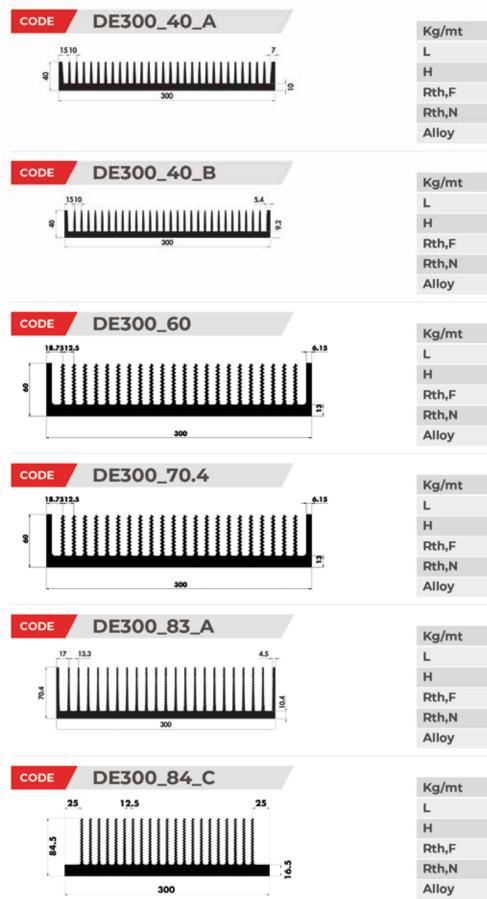
Kg/mt	24.68 Kg/mt
L	250 mm
н	83 mm
Rth,F	0.310 K/W
Rth,N	0.90 K/W
Alloy	6061

Kg/mt	20.68 Kg/mt
L	260 mm
н	67.50 mm
Rth,F	0.290 K/W
Rth,N	0.81 K/W
Alloy	6061

Kg/mt	18.18 Kg/mt
L	260 mm
н	67.50 mm
Rth,F	0.279 K/W
Rth,N	0.90 K/W
Alloy	6061

Kg/mt	24.92 Kg/mt	
L	265 mm	
н	74 mm	
Rth,F	0.297 K/W	
Rth,N	0.88 K/W	
Alloy	6061	

24.13 Kg/mt	
265 mm	
74 mm	
0.330 K/W	
0.88 K/W	
6061	
	265 mm 74 mm 0.330 K/W 0.88 K/W


Kg/mt	18.74 Kg/mt	
L	270 mm	
н	73 mm	
Rth,F	0.350 K/W	
Rth,N	0.99 K/W	
Alloy	6061	

Technology: **EXTRUDED**

CODE DE290_85	Kg/mt	25.40 Kg/mt	
◄ □ () () () () () () () () □	L	290 mm	
	н	0.279 K/W	~
	Rth,F	0.81 K/W	WELDING
	Rth,N	85 mm	WELDING
79	Alloy	6061	
CODE DE300_25_A	Kg/mt	9.022 Kg/mt	- 1
	L	300 mm	
8 •	н	25 mm	
25	Rth,F	0.398 K/W	
²⁵ 1 e	Rth,N	1.28 K/W	GQ
300	Alloy	6061	0L(
			ASSEMBLED
CODE DE300_25_B	16 or loop to	0.01 // -/+	AS
	Kg/mt	9.01 Kg/mt 300 mm	
8 6	L H	25 mm	
25	Rth,F	0.121 K/W	
²³ ↓ [6	Rth,N	0.36 K/W	
300	Alloy	6061	
	Alloy	0001	HEATPLUS
CODE DE300_27	<u>.</u>		ATP
51000_17	Kg/mt	11.90 Kg/mt	HE
	L	300 mm	Ë
	н	27 mm	
300	Rth,F	0.390 K/W	
	Rth,N	1.08 K/W	
	Alloy	6061	щЪ
CODE DE300_36			COLDPLATE
CODE DE300_36	Kg/mt	11.285 Kg/mt	DPI NO
10	L	300 mm	ICH ICH
e	н	36 mm	ΟË
»[Rth,F	0.279 K/W	
65	Rth,N	0.81 K/W	
300	Alloy	6061	
CODE DE300_40	Kg/mt	13.02 Kg/mt	Ш Ш
1510 5.3	L	300 mm	PV
	н	40 mm	ROR
8	Rth,F	0.342 K/W	<u> </u>
300	Rth,N	1.10 K/W	
	Alloy	6061	

Technology: **EXTRUDED**

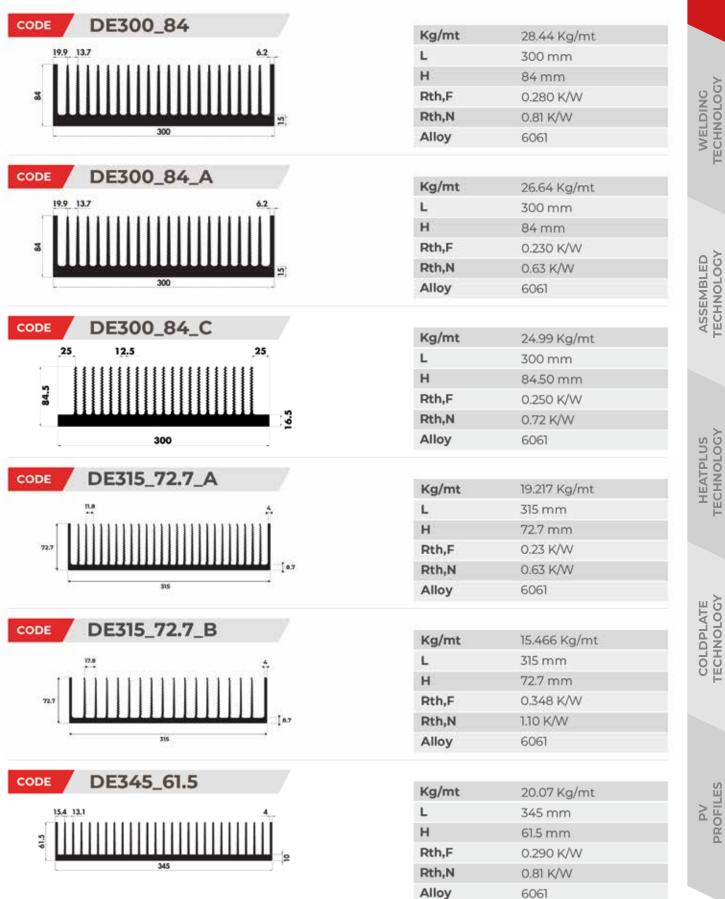
Kg/mt	15.80 Kg/mt	
L	300 mm	
н	40 mm	
Rth,F	0.351 K/W	
Rth,N	1.08 K/W	
Alloy	6061	

FOO W. J.

Kg/mt	14.35 Kg/mt	
L	300 mm	
н	40 mm	
Rth,F	0.288 K/W	
Rth,N	0.88 K/W	
Alloy	6061	

Kg/mt	20.53 Kg/mt
L	300 mm
н	60 mm
Rth,F	0.279 K/W
Rth,N	0.81 K/W
Alloy	6061
Alloy	6061

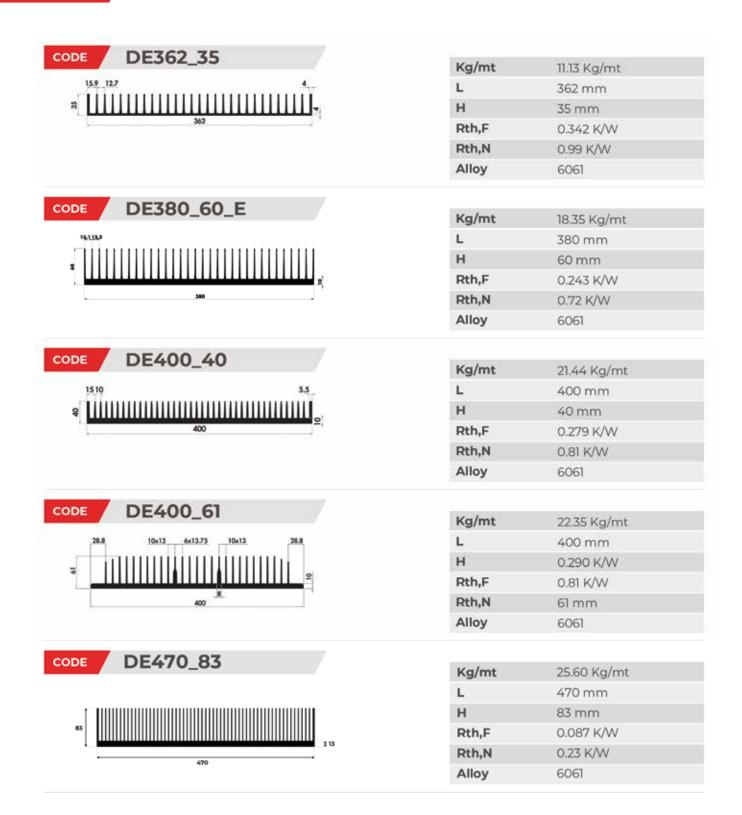
Kg/mt	18.77 Kg/mt
L	300 mm
н	70.4 mm
Rth,F	0.279 K/W
Rth,N	0.90 K/W
Alloy	6061


L 300 mm	
- 00011111	
H 83 mm	
Rth,F 0.261 K/W	
Rth,N 0.81 K/W	
Alloy 6061	

Kg/mt	24.99 Kg/mt	
L	300 mm	
н	84.50 mm	
Rth,F	0.250 K/W	
Rth,N	0.72 K/W	
Alloy	6061	

Technology: **EXTRUDED**

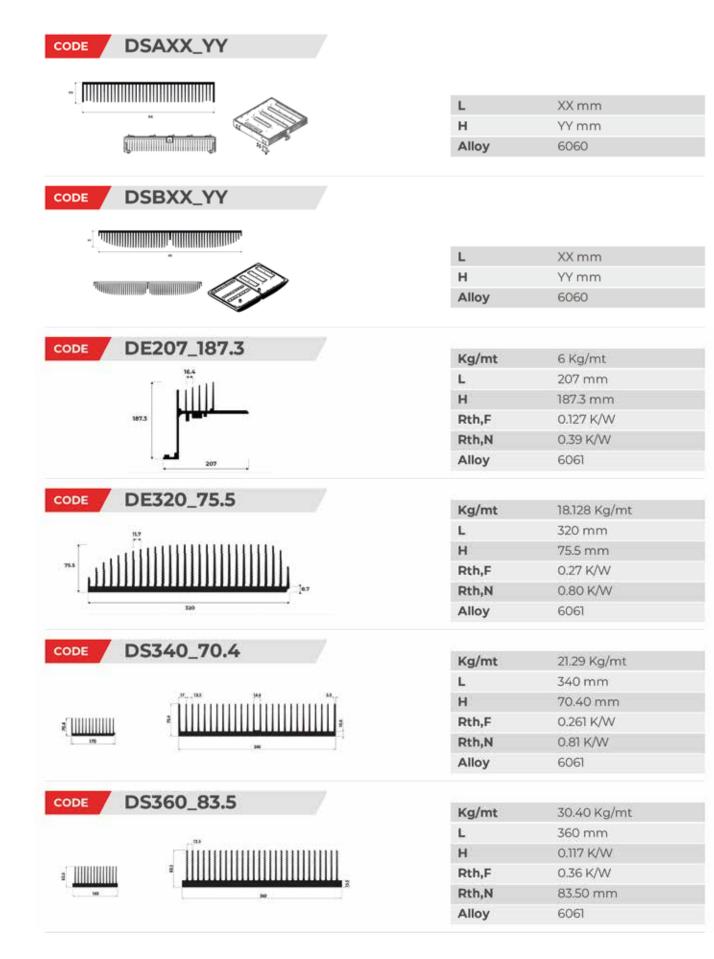
TECHNOLOGY


IECHNOLOGY

PROFILES

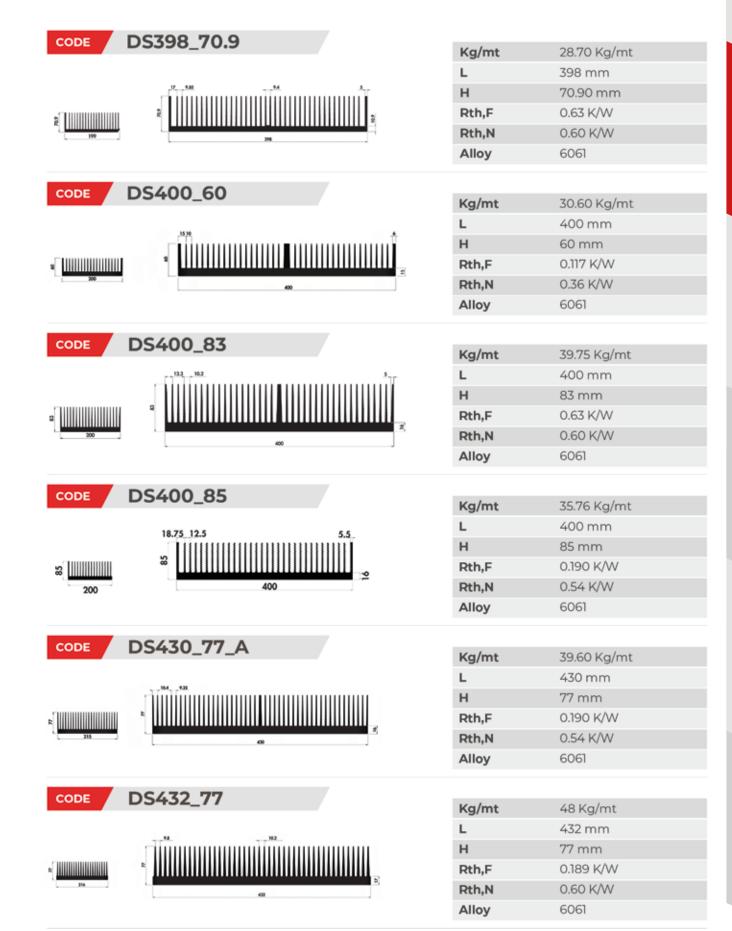
WELDED TECHNOLOGY

To obtain profiles of large dimensions, which cannot be made directly with extrusion, two or more extruded profiles can be welded together.

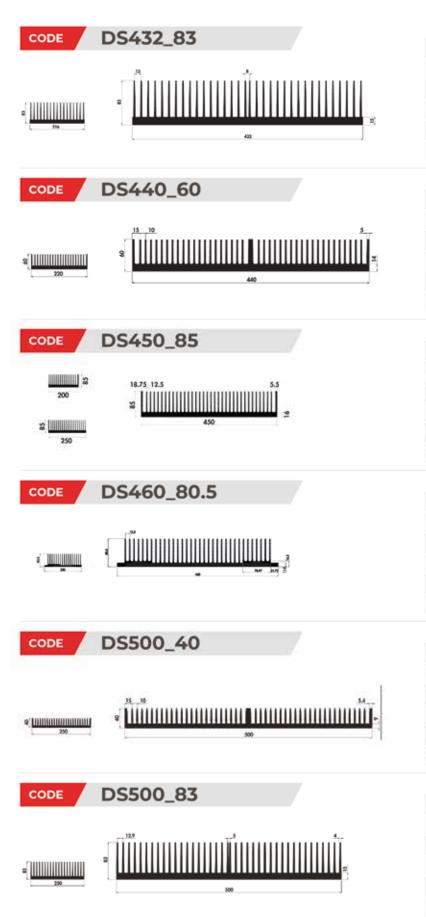

Welding is extremely flexible to the customer's dimensional needs and can be used for any modification to existing profiles. MG Italy makes its experience and availability available to its customers in order to create the required product. We provide special extruded profiles already chamfered for a simpler and more efficient MIG and TIG welding operation. This technique allows us to create profiles with a maximum width of 900 mm.

INTERCORDERATION INTERCORDERATION

00


.

Technology: WELDED


Technology: **WELDED**

Technology: **WELDED**

Kg/mt

L	432 mm
н	83 mm
Rth,F	0.198 K/W
Rth,N	0.63 K/W
Alloy	6061
Kg/mt	34.54 Kg/mt
L	440 mm
н	60 mm
Rth,F	0.216 K/W
Rth,N	0.70 K/W
Alloy	6061

36.13 Kg/mt

Kg/mt	40.13 Kg/mt	
L	450 mm	
н	85 mm	
Rth,F	0.162 K/W	
Rth,N	0.48 K/W	
Alloy	6061	

Kg/mt	34.95 Kg/mt
L	460 mm
н	80.50 mm
Rth,F	0.108 K/W
Rth,N	0.32 K/W
Alloy	6061

Kg/mt	23.87 Kg/mt	
L	500 mm	
н	40 mm	
Rth,F	0.171 K/W	
Rth,N	0.63 K/W	
Alloy	6061	

Kg/mt	49.36 Kg/mt
L	500 mm
н	83 mm
Rth,F	0.189 K/W
Rth,N	0.54 K/W
Alloy	6061

Technology: **WELDED**

			Ē
CODE DS500_85	Kg/mt	44.51 Kg/mt	
	L	500 mm	
	н	85 mm	
	Rth,F	0.153 K/W	b c
»	Rth,N	0.45 K/W	D D D D D D D D D D
250 500	Alloy	6061	
			> <u>H</u>
CODE DS520_67.5	Kg/mt	41.36 Kg/mt	
	L	520 mm	
12 <i>A</i> 9 <u>A</u> 45	н	67.50 mm	
	Rth,F	0.171 K/W	~
ة المعالم المعا معالم المعالم ال	Rth,N	0.54 K/W	OG) ED
	Alloy	6061	ABL
			ASSEMBLED
CODE DS520_67.5_A	Kg/mt	36.37 Kg/mt	AS
	L	520 mm	
мі <u>н</u> и — на	н	67.50 mm	
	Rth,F	0.190 K/W	
No. and No. (1997)	Rth,N	0.54 K/W	
	Alloy	6061	S G
			HEATPLUS
CODE DS550_85	Kg/mt	48.88 Kg/mt	ATE
	L	550 mm	H I I I I I I I I I I I I I I I I I I I
8 18.75 12.5 5.5 250	н	85 mm	
250 2	Rth,F	0.150 K/W	
550	Rth,N	0.45 K/W	
300	Alloy	6061	
			UGY E
CODE DS600_25	Kg/mt	19.02 Ka/mt	COLDPLATE
		18.02 Kg/mt 600 mm	ULD I
and the state of the	L H	25 mm	LEC
	Rth,F	0.252 K/W	
	Rth,N	0.80 K/W	-
	Alloy	6061	
	,		
CODE DS600_40_A	Kerten	77 60 1/-1-1	S
	Kg/mt	31.60 Kg/mt	PV
N	L	600 mm 40 mm	PV
	Rth,F	40 mm 0.72 K/W	Å.
	Rth,N	0.72 K/W	
	Alloy	6061	
	Alloy	0001	

CODE DS600_70.4		
D0000_/011	Kg/mt	37.53 Kg/mt
	L	600 mm
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	н	70.40 mm
	Rth,F	0.190 K/W
	Rth,N	0.54 K/W
	Alloy	6061
CODE DS600_83_A	<i></i>	
D3000_85_A	Kg/mt	46.15 Kg/mt
	L	600 mm
21000000000000000000000000000000000000	н	83 mm
	Rth,F	0.162 K/W
	Rth,N	0.48 K/W
	Alloy	6061
DS600 85		
DS600_85	Kg/mt	53.25 Kg/mt
	L	600 mm
18.75_12.5 5.5	н	85 mm
a a	Rth,F	0.135 K/W
300 600	Rth,N	0.40 K/W
	Alloy	6061
CODE DS690_61.5		
03050_01.5	Kg/mt	40.15 Kg/mt
	L	690 mm
	н	61.50 mm
	Rth,F	0.171 K/W
	Rth,N	0.54 K/W
	Alloy	6061
DS700_85		
03700_03	Kg/mt	62 Kg/mt
	L	700 mm
200 18.75 12.5 5.5	н	85 mm
3	Rth,F	0.13 K/W
300 2 700	Rth,N	0.36 K/W
	Alloy	6061
DS750_85	-	
05750_05	Kg/mt	66.37 Kg/mt
	L	750 mm
250 18.75 12.5 5.5	н	85 mm
22 <u>2</u> 2	Rth,F	0.117 K/W
3 750 250	Rth,N	0.36 K/W
	Alloy	6061

Technology: **WELDED**

DS800_40	Kg/mt	42.87 Kg/mt	
	L	800 mm	
м_м м.	н	40 mm	
	Rth,F	0.171 K/W	
	Rth,N	0.54 K/W	
	Alloy	6061	
DE DS800_85			
03000_03	Kg/mt	70.75 Kg/mt	
	L	800 mm	
250 18.75 12.5 5.5	н	85 mm	
8	。 Rth,F	0.108 K/W	
2 800	Rth,N	0.32 K/W	
300	Alloy	6061	
DS850_85			
20000_00	Kg/mt	75.12 Kg/mt	
	L	850 mm	
300 18.75 12.5 5.5	н	85 mm	
300 2	Rth,F	0.108 K/W	
a 850 250	Rth,N	0.32 K/W	
	Alloy	6061	
DE DS900_85			
	Kg/mt	79.49 Kg/mt	
	L	900 mm	
2 1875 12.5 5.3	н	85 mm	
2 2	Rth,F	0.099 K/W	
200 I 100	Rth,N	0.32 K/W	
	Alloy	6061	

COLDPLATE TECHNOLOGY

PV PROFILES

47

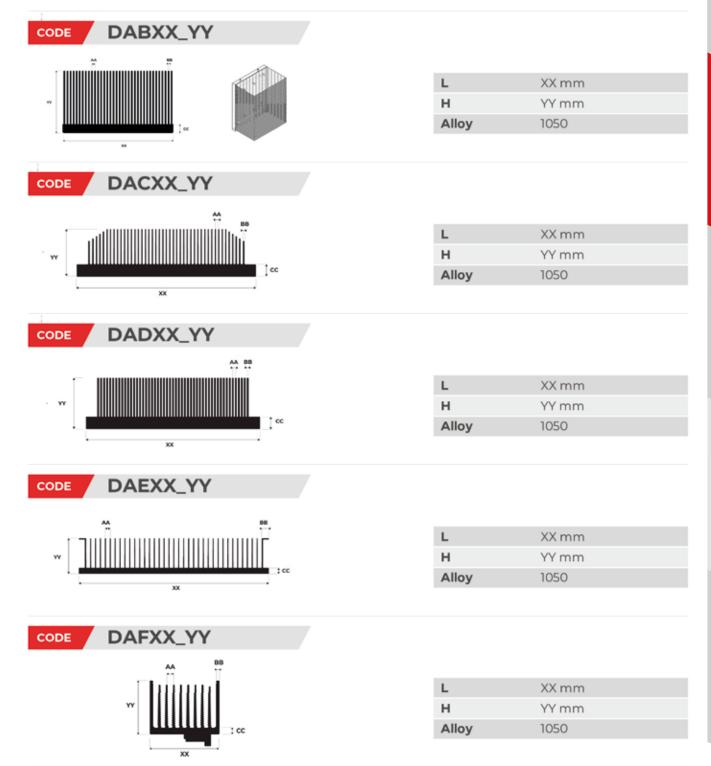
This line of products was born from the continuous and growing need to supply heat sinks with ever greater thermal performance.

We worked on the section of the single fin, on the number of fins and on their arrangement. Obtained by mechanically assembling the single fins, the high efficiency heat sinks also offer high dimensional flexibility and the same mechanical characteristics as the extruded heat sinks, making them particularly suitable for use in high power systems in forced convection.

Defined Assembled Profiles (PA) are divided by width and height of the single fin profile or module and organized in increasing order of size.

Technology: **ASSEMBLED**

EXTRUDED TECHNOLOGY

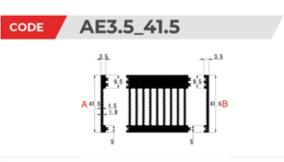

WELDING TECHNOLOGY

ASSEMBLED TECHNOLOGY

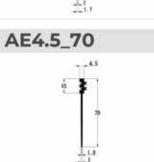
HEATPLUS TECHNOLOGY

COLDPLATE TECHNOLOGY

49

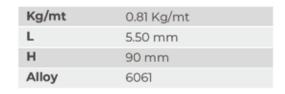



CODE


L	XX mm
н	YY mm
Alloy	1050

Technology: **ASSEMBLED**

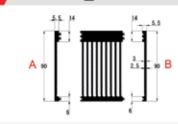
0.28 Kg/mt
3.50 mm
41.50 mm
6061



Kg/mt	0.77 Kg/mt	
L	4.50 mm	
н	65 mm	
Alloy	6061	

Kg/mt	0.39 Kg/mt	
L	4.50 mm	
н	70 mm	
Alloy	6061	

Kg/mt	0.47 Kg/mt
L	4.50 mm
н	76 mm
Alloy	6061


Kg/mt	1.06 Kg/mt	
L	5.50 mm	
н	125 mm	
Alloy	6061	

CODE

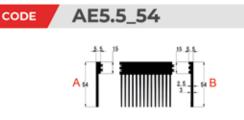
CODE

CODE AE5.5_125

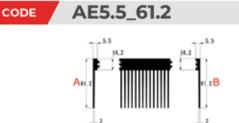
Technology: **ASSEMBLED**

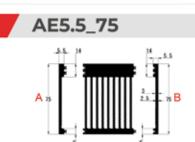
EXTRUDED TECHNOLOGY

TECHNOLOGY

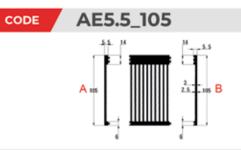

ASSEMBLED TECHNOLOGY

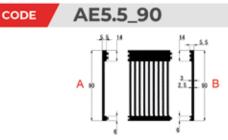
HEATPLUS TECHNOLOGY

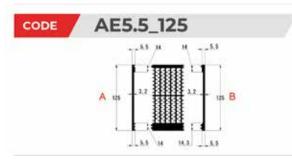

COLDPLATE TECHNOLOGY


PV PROFILES

WELDING

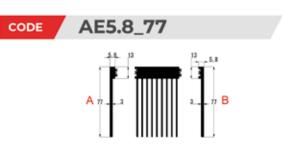



Kg/mt	0.61 Kg/mt
L	5.50 mm
н	54 mm
Alloy	6061

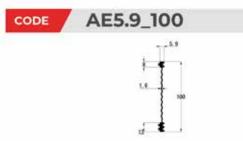


CODE

Kg/mt	0.44 Kg/mt
L	5.50 mm
н	61.20 mm
Alloy	6061
Alloy	6061

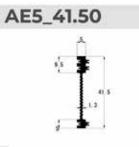

Kg/mt	0.45 Kg/mt	
L	5.50 mm	
н	75 mm	
Alloy	6061	

Kg/mt	0.83 Kg/mt	
L	5.50 mm	
н	105 mm	
Alloy	6061	


Kg/mt	0.87 Kg/mt
L	5.50 mm
н	90 mm
Alloy	6061

Kg/mt	1.37 Kg/mt	
L	5.50 mm	
н	125 mm	
Alloy	6061	

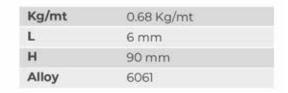
Technology: **ASSEMBLED**

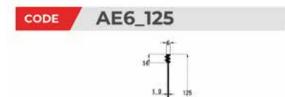


Kg/mt	0.75 Kg/mt
L	5.80 mm
н	77 mm
Alloy	6061

CODE

Kg/mt	0.69 Kg/mt	
L	5.90 mm	
н	100 mm	
Alloy	6061	




Kg/mt	0.29 Kg/mt
L	5 mm
н	41.5 mm
Alloy	6061

Kg/mt	0.50 Kg/mt	
L	6.30 mm	
н	77 mm	
Alloy	6061	

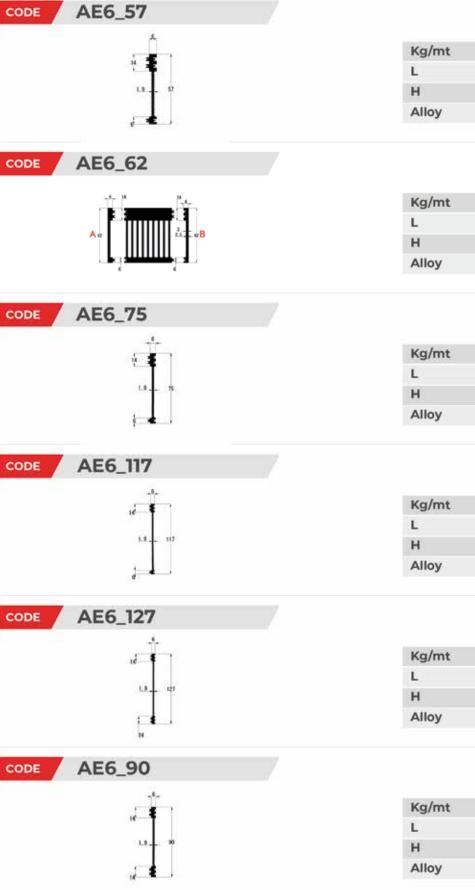
Kg/mt	0.86 Kg/mt	
L	6 mm	
н	125 mm	
Alloy	6061	

Technology: ASSEMBLED

0.51 Kg/mt

6 mm

57 mm


6061

EXTRUDED TECHNOLOGY

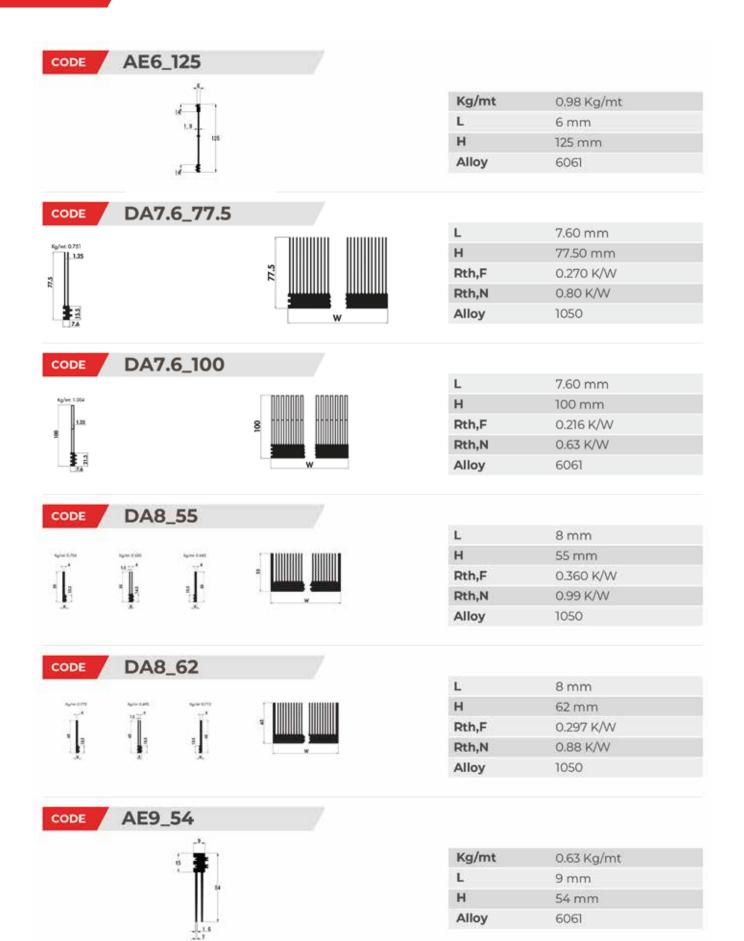
WELDING TECHNOLOGY

ASSEMBLED TECHNOLOGY

COLDPLATE TECHNOLOGY

Kg/mt	0.44 Kg/mt
L	6 mm
н	62 mm
Alloy	6061

Kg/mt	0.51 Kg/mt	
L	6 mm	
н	75 mm	
Alloy	6061	


0.81 Kg/mt	
6 mm	
117 mm	
6061	
	6 mm 117 mm

Kg/mt	0.96 Kg/mt	
L	6 mm	
н	127 mm	
Alloy	6061	

Kg/mt	0.77 Kg/mt	
L	6 mm	
н	90 mm	
Alloy	6061	

Technology: **ASSEMBLED**

CODE

CODE

CODE

CODE

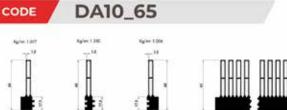
P

CODE

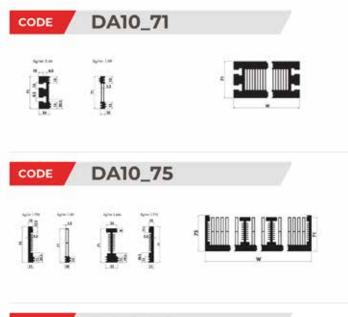
F 8

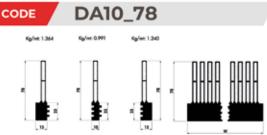
a.

Technology: ASSEMBLED EXTRUDED TECHNOLOGY

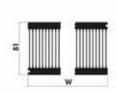

AE9_61.2			
d	Kg/mt	0.67 Kg/mt	
14.2	L	9 mm	≻
41, 2	н	61.2 mm	UN O
	Alloy	6061	
-1.6	Alloy	0001	WELDING
			TE /
DA9_83.5	L	9 mm	
Rg/Ht 1025	н	83.50 mm	
	Rth,F	0.320 K/W	
a 2	Rth,N	0.88 K/W	~ >
	Alloy	1050	U U U
w	Alloy	1000	MB
			ASSEMBLED
DA10_117	L	10 mm	₹ ₹
	н	0.70 K/W	
	Rth,F	0.240 K/W	
2 2 111111	Rth,N	117 mm	
	Alloy	1050	
	Alloy	1050	SGY
			HEATPLUS TECHNOLOGY
DA10_122			HN
	L	10 mm	ΞΞ
apartitic spectral	н	122 mm	
т	Rth,F	0.230 K/W	
	Rth,N	0.63 K/W	
	Alloy	1050	
			ЩЪ
AE10_127			COLDPLATE
			HN
	Kg/mt	2.52 Kg/mt	С С Ш С
A127	L	10 mm	-
A 127 - 2 - 5 5 5 - 127 B	н	127 mm	
	Alloy	6061	
8i 8i			
DA10_65			6
	L	10 mm	PROFILES
Agive 1280 Agive 1200 	н	65 mm	PV
	Rth,F	0.99 K/W	Å
		and the marked and to a	

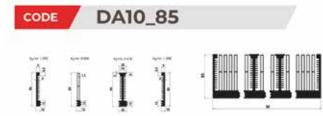
Rth,N


Alloy


0.360 K/W

1050


Technology: **ASSEMBLED**



CODE DA10_81

L	10 mm	
н	71 mm	
Rth,F	1.08 K/W	
Rth,N	0.369 K/W	
Alloy	1050	

10 mm	
75 mm	
0.90 K/W	
0.279 K/W	
1050	
	75 mm 0.90 K/W 0.279 K/W

L	10 mm	
н	78 mm	
Rth,F	0.320 K/W	
Rth,N	0.88 K/W	
Alloy	1050	

L	10 mm	
н	81 mm	
Rth,F	0.279 K/W	
Rth,N	0.81 K/W	
Alloy	1050	

L	10 mm	
н	85 mm	
Rth,F	0.81 K/W	
Rth,N	0.252 K/W	
Alloy	1050	

L	10 mm	
н	90 mm	
Rth,F	0.90 K/W	
Rth,N	0.279 K/W	
Alloy	1050	

Technology: ASSEMBLED

10 mm

101 mm

0.279 K/W

0.81 K/W

1050

L

н

Rth,F

Rth,N

Alloy

EXTRUDED TECHNOLOGY

WELDING TECHNOLOGY

ASSEMBLED TECHNOLOGY

COLDPLATE TECHNOLOGY

CODE	DA10_132.5		
Kg/wt 1.434		L	10 mm
		н	132.50 mm
		Rth,F	0.210 K/W
a -	8	Rth,N	0.56 K/W
2 a		Alloy	1050
)a			
CODE	AE12.5_125		
SHAMPSON	,		
		Kg/mt	1.38 Kg/mt
		L	12.50 mm
	125 1.9	н	125 mm
		Alloy	6061
0005	AC12 00		
CODE	AC12_90		
		Kg/mt	1,40 Kg/mt
	ul- f	L	12 mm
	1.8 - 00	н	90 mm
		Rth,F	100 K/W
CODE	AE12_90		
	[] ¹⁰	Mar land	21011
	u. 4	Kg/mt L	1.40 Kg/mt
	1.9	н	12 mm 90 mm
	0	Alloy	90 mm 6061
	j #	Alloy	0001
CODE	AE12_105		
	12.		
	d 🖷 1	Kg/mt	1.53 Kg/mt
	1.9	L	12 mm
	1. F	н	105 mm
	;_₩	Alloy	6061

CODE	AE12_90	

DA10_101

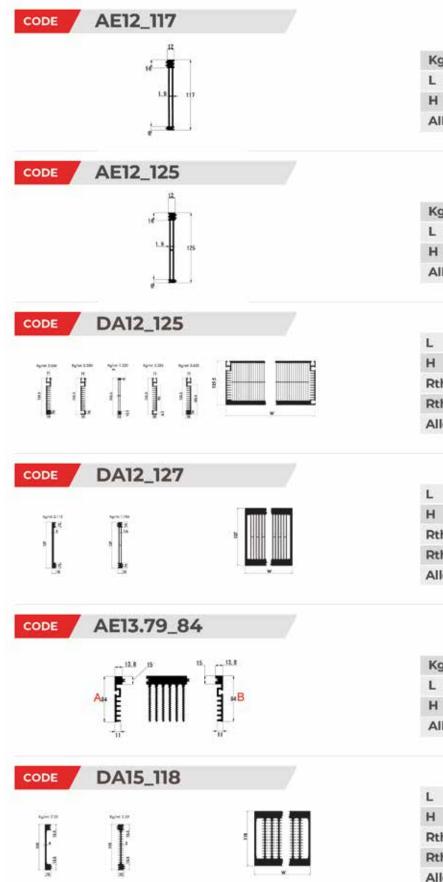
101

110 100 Spine 1.000

₹3

2

3


CODE

Kg/mt	1.40 Kg/mt	
L	12 mm	
н	90 mm	
Alloy	6061	

12 mm
105 mm
6061

Technology: **ASSEMBLED**

Kg/mt	1.64 Kg/mt	
L	12 mm	
н	117 mm	
Alloy	6061	

Kg/mt	1.76 Kg/mt	
L	12 mm	
н	125 mm	
Alloy	6061	

L	12 mm	
н	125 mm	
Rth,F	0.220 K/W	
Rth,N	0.63 K/W	
Alloy	1050	

L	12 mm	
н	127 mm	
Rth,F	0.250 K/W	
Rth,N	0.72 K/W	
Alloy	1050	

Kg/mt	1.52 Kg/mt	
L	13.79 mm	
н	84 mm	
Alloy	6061	

L	15 mm	
н	118 mm	
Rth,F	0.81 K/W	
Rth,N	0.290 K/W	
Alloy	1050	

Technology: ASSEMBLED

EXTRUDED TECHNOLOGY

WELDING TECHNOLOGY

ASSEMBLED

HEATPLUS TECHNOLOGY

COLDPLATE TECHNOLOGY

PV PROFILES

CODE A20_41		
12, 5	Kg/mt	1.08 Kg/mt
	L	20 mm
	н	41 mm
	Alloy	6061
1.2		0001
CODE AE25_41		
_25 12.5 12.5 28	Kg/mt	1.52 Kg/mt
	L	25 mm
	н	41 mm
21	Alloy	6061
CODE AE37.24_84	Kg/mt	3.16 Kg/mt
	L	37.24 mm
2.1	н	84 mm
	Alloy	6061
CODE DA50_62		
	L	50 mm
кули 3.7 Кули 7.41 734734	н	62 mm
	Rth,F	0.220 K/W
	Rth,N	0.63 K/W
	Alloy	1050
CODE DE84_6.6		
215	Kg/mt	0.54
**[L	84 mm
	н	6.6 mm
	Alloy	6061
CODE DE84_7.1		

1

2,15

86

73

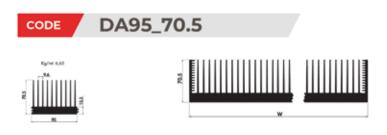
Kg/mt

L

н

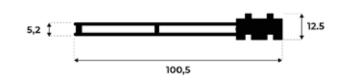
Alloy

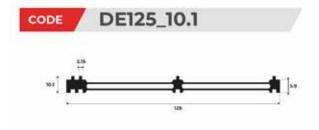
0.97 Kg/mt

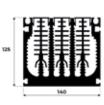

84 mm

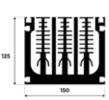
7.1 mm

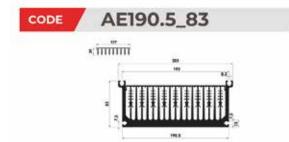
6061




Technology: **ASSEMBLED**


L	95 mm
н	70.50 mm
Rth,F	0.480 K/W
Rth,N	1.40 K/W
Alloy	1050





Kg/mt	1.3 Kg/mt	
L	100,5 mm	
н	12.5 mm	
Alloy	6060	

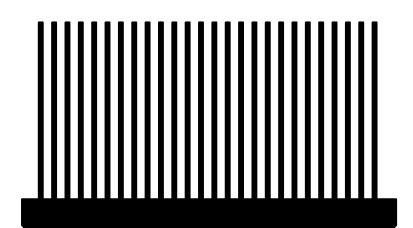
Kg/mt	1.35 Kg/mt	
L	125 mm	
н	10.1 mm	
Alloy	6061	

Kg/mt	22.9 Kg/mt
L	140 mm
н	125 mm
Rth,F	0.18 K/W
Rth,N	0.81 K/W
Alloy	6061

Kg/mt	23.77 Kg/mt
L	150 mm
н	125 mm
Rth,F	0.128 K/W
Rth,N	0.38 K/W
Alloy	6061

Kg/mt	18.87 Kg/mt	
L	190.50 mm	
н	83 mm	
Rth,F	0.260 K/W	
Rth,N	0.72 K/W	
Alloy	6061	

WELDING TECHNOLOGY


ASSEMBLED TECHNOLOGY

CODE DE200_125_B		
02200_125_0	Kg/mt	30.8 Kg/mt
	L	200 mm
	н	125 mm
	Rth,F	0.088 K/W
	Rth,N	0.26 K/W
200	Alloy	6061
DE200 125 A		
CODE DE200_125_A	10 million 1	24404-1-1
CODE DE200_125_A	Kg/mt	24.440 Kg/mt
	Kg/mt L	24.440 Kg/mt 200 mm
91116		
	L	200 mm
91116	L H	200 mm 125 mm
91116	L H Rth,F	200 mm 125 mm 0.088 K/W

HEATPLUS TECHNOLOGY

COLDPLATE TECHNOLOGY

PV PROFILES

HEATSINK - PLUS TECHNOLOGY

Tecnologia HEAT PLUS

La tecnologia Heat Plus rivoluziona il settore della dissipazione termica, garantendo un raffreddamento efficiente per una vasta gamma di componenti elettronici. Grazie a un design innovativo e materiali di alta qualità, questa soluzione tecnologica assicura prestazioni superiori, mantenendo stabile la temperatura degli apparecchi elettronici anche nelle condizioni più estreme.

Mechanical properties

	Tensile strength	0,2 Proof Stress	Elongation	Hardness	Module of elasticity
Aluminum EN AW-1050A	80 N/mm²	35 N/mm ²	38%	21 HB	65 kN/mm²
Aluminum EN AW-6101B	120 N/mm²	70 N/mm²	9%	25 HB	69 kN/mm²
Copper	210 N/mm²	120 N/mm²	45%	45 HV	110 kN/mm²

Chemical Composition

	Si	Fe	Mn	Mg	Cu	Zn	ті	Altri	ΑΙ
Aluminum EN AW-1050A	0,25	0,40	0,05	0,05	0,05	0,07	0,05	0,03 (each)	99,5 (min)
Aluminum EN AW-6101B	0,30-0,60	0,10-0,30	0,05	0,35-0,60	0,05	O,1	-	0,03 (each)	98,2 (max)
Copper	-	-	-	-	99,95 (min)	-	-	0,05 (tot)	

Physical properties

Density	Thermal conductivity	Electrical conductivity	Linear thermal expansion coeff.
2,70 Kg/dm ²	229 W/mK	35,4 m/Ωmm²	23,6 10 ⁻⁶ 1/K
2,70 Kg/dm ²	219 W/mK	32,6 m/Ωmm²	23,4 10 ⁻⁶ 1/K
8,93 Kg/dm ²	390 W/mK	57,0 m/Ωmm²	16,8 10 ⁻⁶ 1/K

Application Properties

Machinability	Weldability	Corrosion Resistance	Formability	Surface Treatment
Media	Buona	Ottima	Buona	Buona
Buona	Ottima	Ottima	Media	Buona
Media	Buona	Buona	Buona	Buona

WELDING TECHNOLOGY

TECHNOLOGY

HeatPlus

Heatsink Width (W)	max 1000 mm (without welding)
Heatsink Lenght (L)	max 1300 mm
Base Thickness (BT)	8 ÷ 50 mm
Fin Height (FH)	max 190 mm
Fin Thickness (FT)	1 ÷ 3 mm
Fins Distance (FD)	min 2 mm
Aspect Ratio (FH/FD)	max 95:1
Tolerances on dim. & machining	ISO 2768-mk
Material	EN AW-1050A - EN AW-6101B - Copper

TECHNOLOGY

UltraHeat

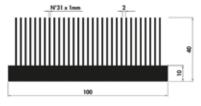
Heatsink Width (W)	max 1000 mm (without welding)
Heatsink Lenght (L)	max 1300 mm
Base Thickness (BT)	8 ÷ 50 mm
Fin Height (FH)	max 190 mm
Fin Thickness (FT)	0,8 / 4 mm
Fins Distance (FD)	min 1 mm
Aspect Ratio (FH/FD)	max 95:1
Tolerances on dim. & machining	ISO 2768-mk
Material	EN AW-1050A - EN AW-6101B - Copper

TECHNOLOGY

DoubleHeat

Heatsink Width (W)	max 1000 mm (without welding)
Heatsink Lenght (L)	max 1300 mm
Base Thickness (BT)	8 ÷ 50 mm
Fin Height (FH)	max 190 mm
Fin Thickness (FT)	0,8 / 4 mm
Fins Distance (FD)	min 2 mm
Aspect Ratio (FH/FD)	max 95:1
Tolerances on dim. & machining	ISO 2768-mk
Material	EN AW-1050A - EN AW-6101B - Copper

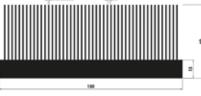
Technology: **HEATPLUS**


ASSEMBLED TECHNOLOGY

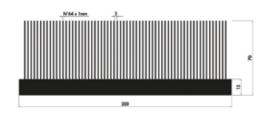
HEATPLUS TECHNOLOGY

COLDPLATE TECHNOLOGY

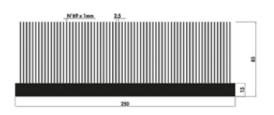
PV PROFILES


CODE HA100_40

Kg/mt	5.21 Kg/mt	o So
L	100 mm	OIO
н	40 mm	HN
Alloy	6061	E C S

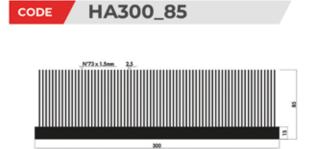

CODE

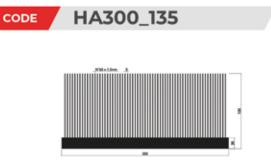
Kg/mt	11.18 Kg/mt
L	150 mm
н	60 mm
Alloy	6061



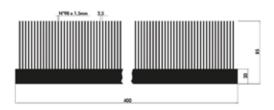
Kg/mt	17.60 Kg/mt	
L	200 mm	
н	70 mm	
Alloy	6061	

CODE


HA250_85


L	250 mm	
н	85 mm	
Alloy	6061	

Kg/mt	32.85 Kg/mt
L	300 mm
н	85 mm
Alloy	6061

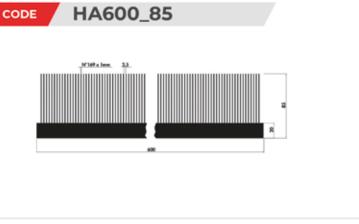


Kg/mt	46.47 Kg/mt
L	300 mm
н	135 mm
Alloy	6061

L	350 mm
н	75 mm
Alloy	6061

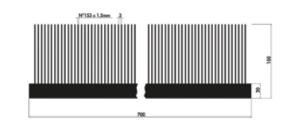
CODE HA400_85

L	400 mm
н	85 mm
Alloy	6061

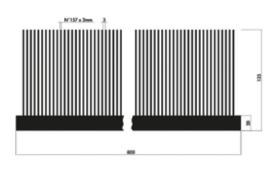


Technology: **HEATPLUS**

HA500_100 CODE 8


L	500 mm
н	100 mm
Alloy	6061

WELDING TECHNOLOGY


Kg/mt	62.02 Kg/mt	
L	600 mm	
н	85 mm	
Alloy	6061	

HA700_100 CODE

CODE

HA800_135

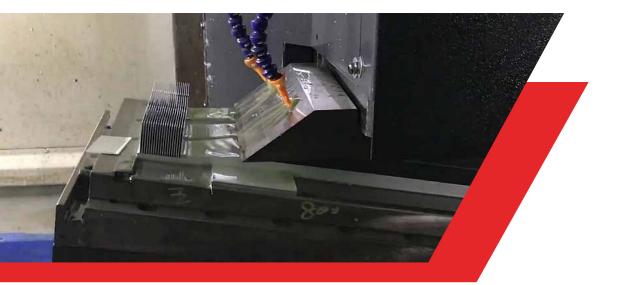
Kg/mt	87.37 Kg/mt	
L	700 mm	
н	100 mm	
Alloy	6061	

Kg/mt	140.70 Kg/mt	
L	800 mm	
н	135 mm	
Alloy	6061	

Technology: COLDPLATE

WELDING TECHNOLOGY

ASSEMBLED TECHNOLOGY


HEATPLUS TECHNOLOGY

COLDPLATE TECHNOLOGY

PV PROFILES

CODE DA90_20		
	L H Alloy	90 mm 20 mm 6060
CODE DA180_20		
	L H Alloy	180 mm 20 mm 6060
CODE DA360_20		
	L H Alloy	360 mm 20 mm 6060
CODE DA360_20		
	L H Alloy	360 mm 20 mm 6060

MGSKIVED TECHNOLOGY

NEW DISSIPATION TECHNOLOGY MGSKIVED HEATSINKS

MGSKIVED technology is used when fins intensity cannot be achieved through extrusion technology. We can use both copper and aluminum.

Today, this technology allows us to overcome the limitations of the thickness and length ratio of conventional heat sinks, and our machines can produce high-density, very high-efficiency heat sinks. We can create tall and extremely thin fin-heatsinks with a long structure thanks to our dedicated beveling machines, using high-precision beveling cutting technology.

Our machines use a single block of material such as copper or aluminum. The fins and base become a "whole".

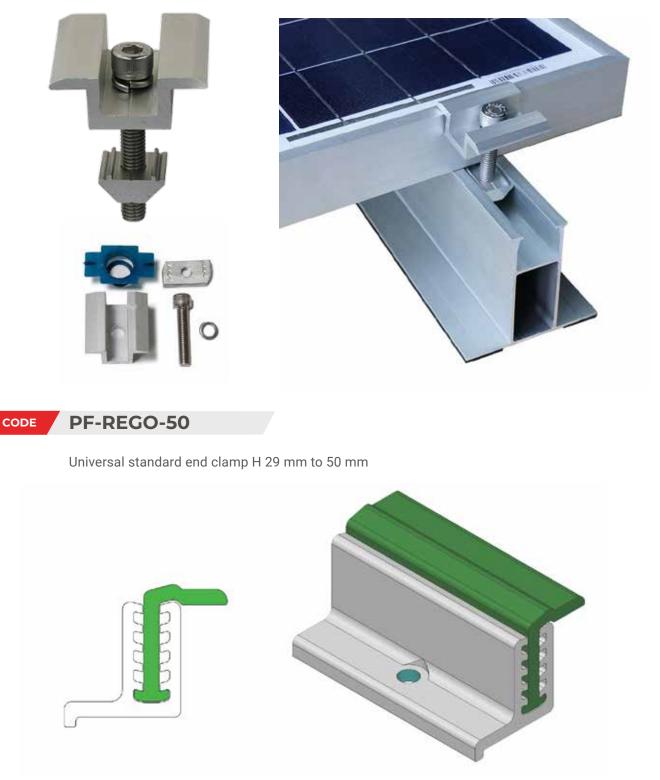
Therefore the efficiency of the heat sink with extended fins is up to two times higher than the traditional heat sink.

Thermal conductivity efficiency can reach 100% of the profile material. This technology can be applied in the photovoltaic industry, electric vehicles, inverters, communication products, LED lights.

Heat Sink Width (W)	max 3000 mm
Heat Sink Length (L)	max 580 mm
Heat Sink Height (H)	max 120 mm
Fin Thickness (FT)	0,3+1 mm
Fin Pitch (FD)	min 1,5 mm
Material	Aluminum, Copper

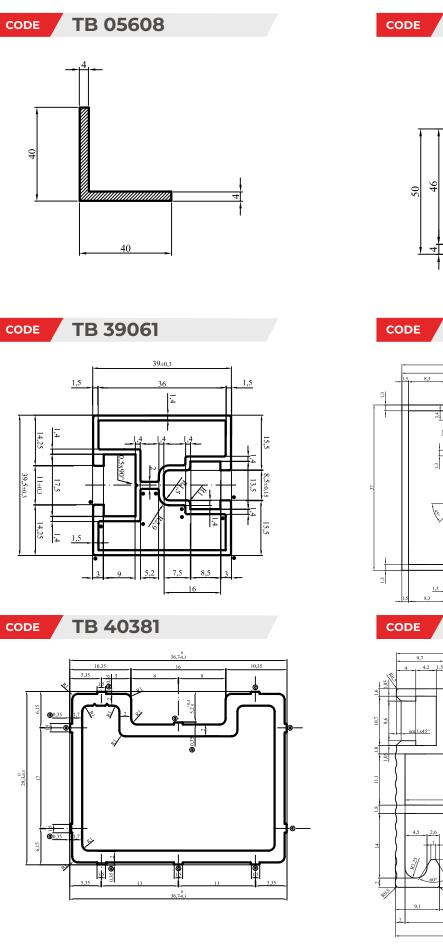
General Specifications

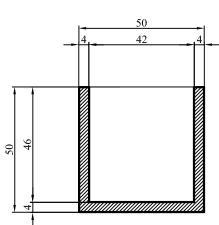
PV PROFILES

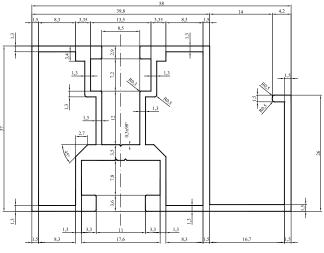


EXTRUDED HEATSINKS

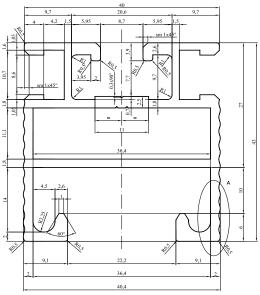
CODE




Central support kit

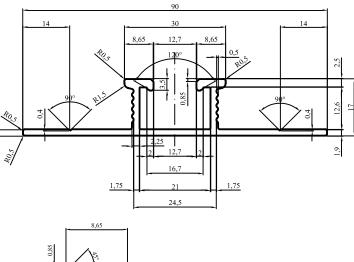


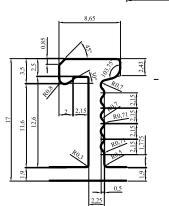
TB 09870

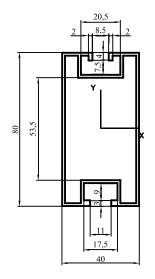


TB 39062

TB 40669

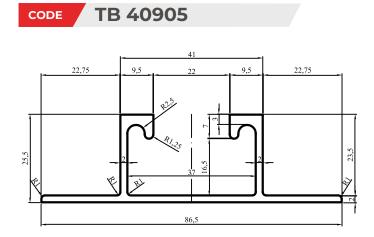


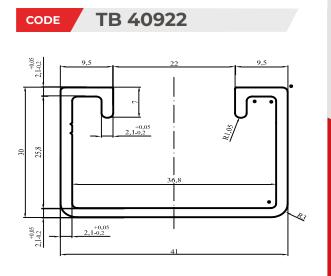

CODE


1,9

TB 40692

CODE TB 40838

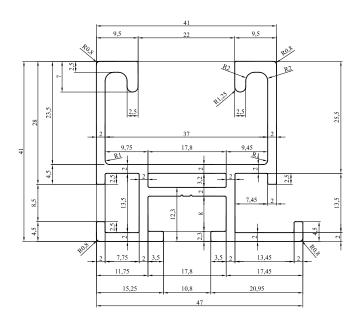

EXTRUDED HEATSINKS

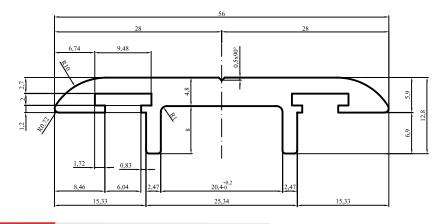

WELDING

ASSEMBLED HEATSINKS

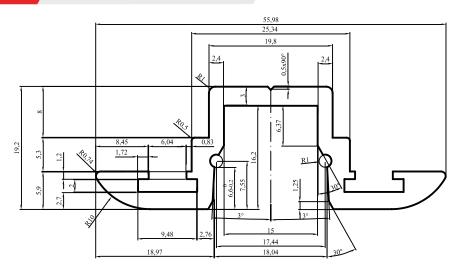
HEAT PLUS HEATSINKS

COLDPLATE HEATSINKS



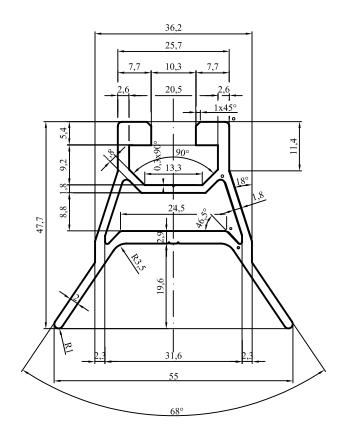

CODE

TB 40923

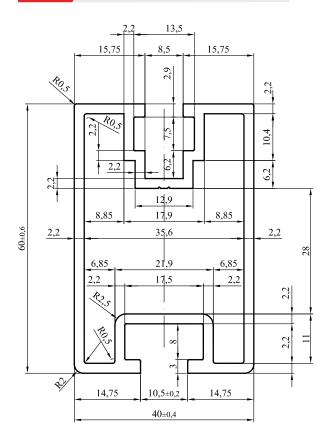


TB 40948

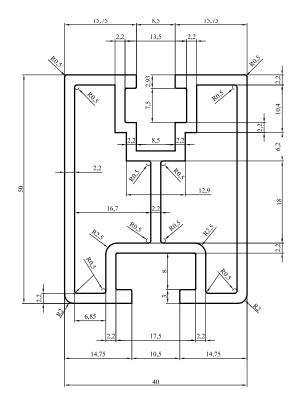
TB 40949



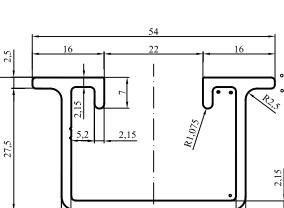
GITA YOUR PARTNER IN METALWORKING


PV **PROFILES**

CODE


TB 40985

TB 41026 CODE


TB 41025 CODE

TB 41092 CODE

30

2,15

36,7

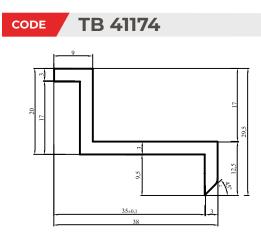
41

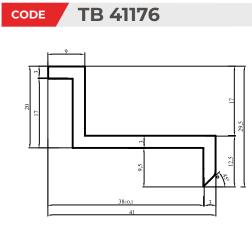
HEAT PLUS HEATSINKS

COLDPLATE HEATSINKS

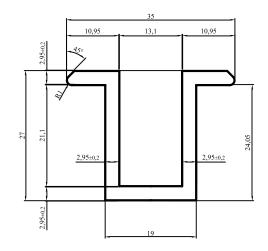
٥

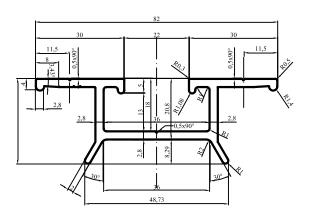
0

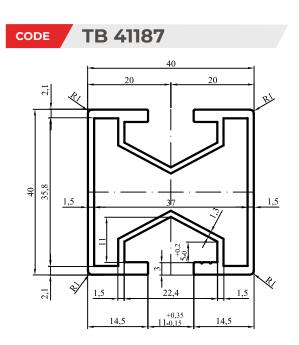

¢


2,15

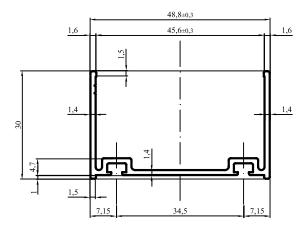
WELDING

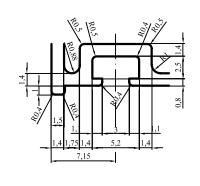

ASSEMBLED HEATSINKS

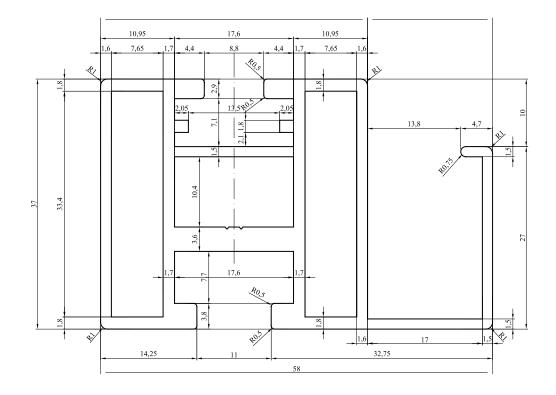




CODE TB 41187

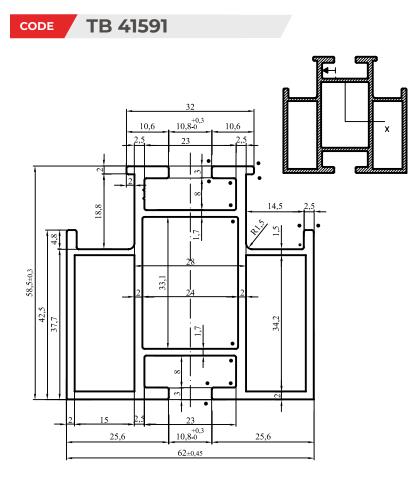




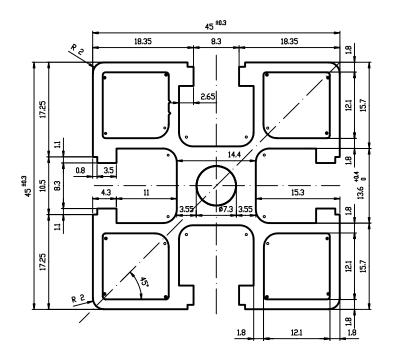


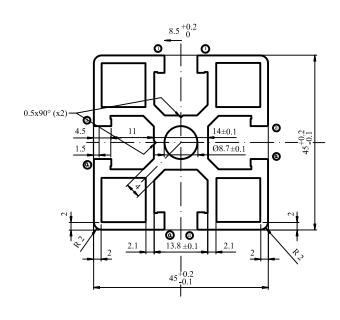
CODE TB 41539

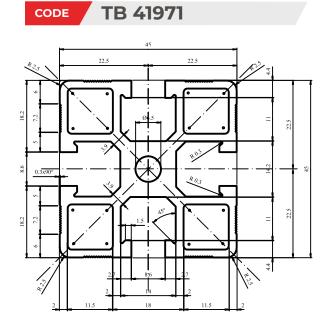
	3 41590
--	---------



ASSEMBLED HEATSINKS

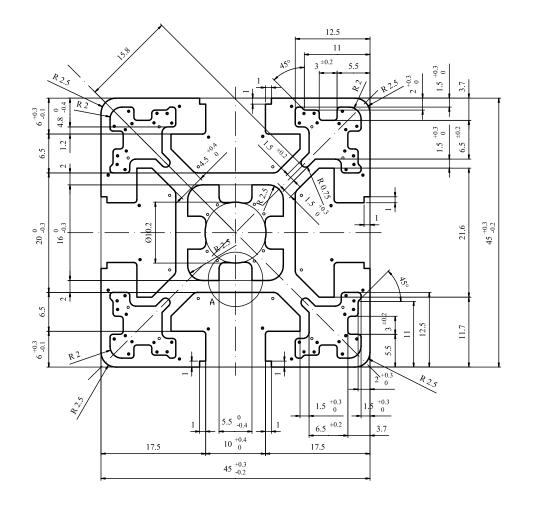

WELDING




EXTRUDED HEATSINKS

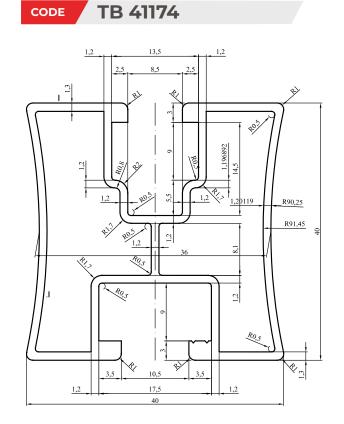
WELDING

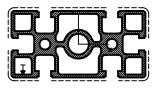
ASSEMBLED HEATSINKS

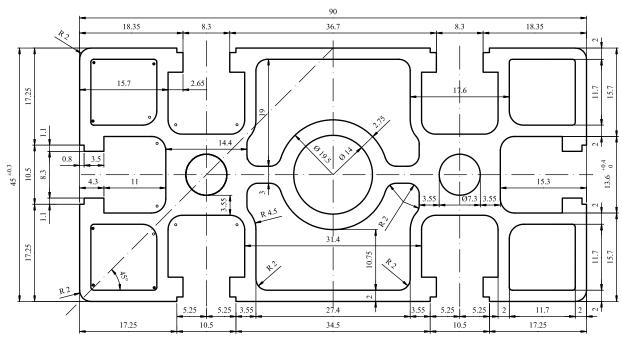

CODE TB 41970

CODE

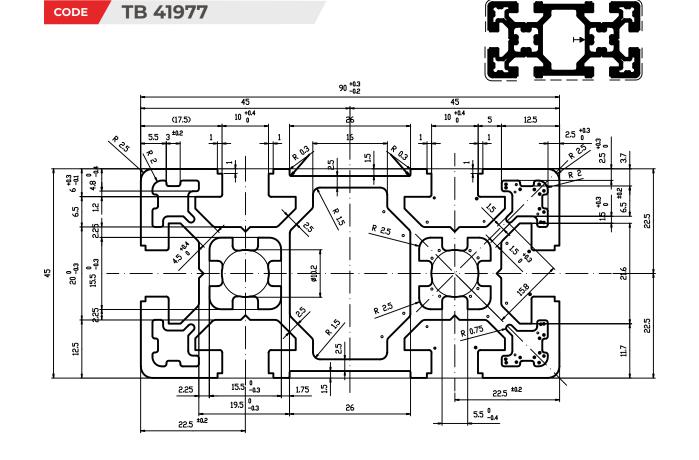
TB 41972


HEAT PLUS HEATSINKS

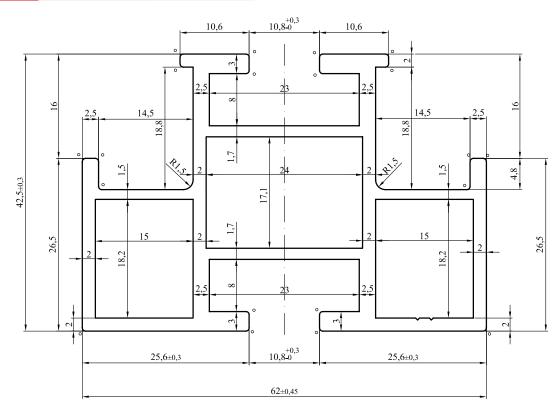



CODE

TB 41173 3,3 ŝ, 22,4 40



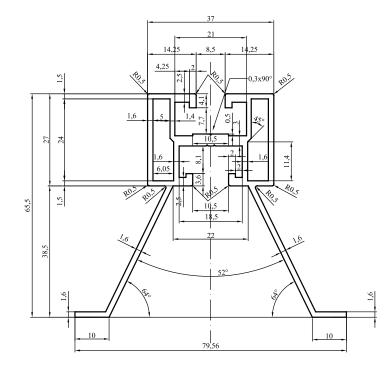
EXTRUDED HEATSINKS

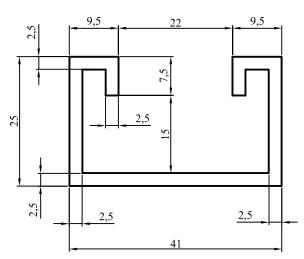

WELDING

ASSEMBLED HEATSINKS

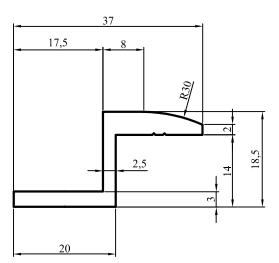
COLDPLATE HEATSINKS

CODE TB 41978

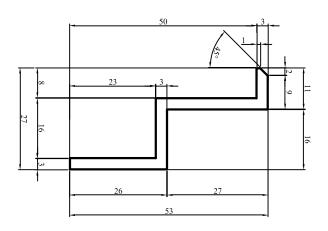




TB 41980


CODE

CODE TB 41979



CODE TB 41990

Processes & MACHINING

MG iTALY carries out countless processes in order to obtain finished products of the highest quality

Surface tratments

100

Assemblies

🔶 Die Casting

Processes

The materials we commonly work are carbon steel (iron), aluminum and its alloys (6060, ergal, etc.), copper, brass and stainless steel in various alloys (AISI 304 – AISI 316 – INCONEL – DUPLEX – SUPER DUPLEX etc.).

Thanks to the very modern machinery we are able to make cuts of various degrees, according to the customer's needs.

CUT

MG has a constantly updated fleet of machines and has over 7 systems dedicated solely to cutting operations. Covering a processing range from diameter 6mm to 200mm with a thickness of a few tenths up to the solid. In addition to round bars, we cut all types of shapes.

Several plants perform operations such as wire brush deburring (brushing), tap/die chamfering and rolling, threading, boring, turning, tapering and washing in line.

Wheel Cut

Band cut

SURFACE TREATMENTS


Within its headquarters, the company has machinery for: metal burnishing, surface sandblasting, metal chrome plating, metal galvanizing, detail polishing.

Painting

Silk printing

DIE-CASTING

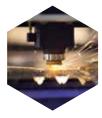
Die casting

Sand casting

CNC TECHNOLOGY

With a fleet of over 15 high-level machining centers, MG proposes itself as prime contractor for carrying out mechanical machining to customer drawings, guaranteeing the production of high precision parts with limited times and costs.

All the CNC machines always work manned by assigned personnel who are exclusively responsible for the good execution and dimensional control of the product they are making.


To make this way of working possible, the department heads supervise the production cycle, while other qualified personnel carry out some necessary and fundamental operations.

Milling

Turning

Laser cutting

Punching

Bending

ASSEMBLY

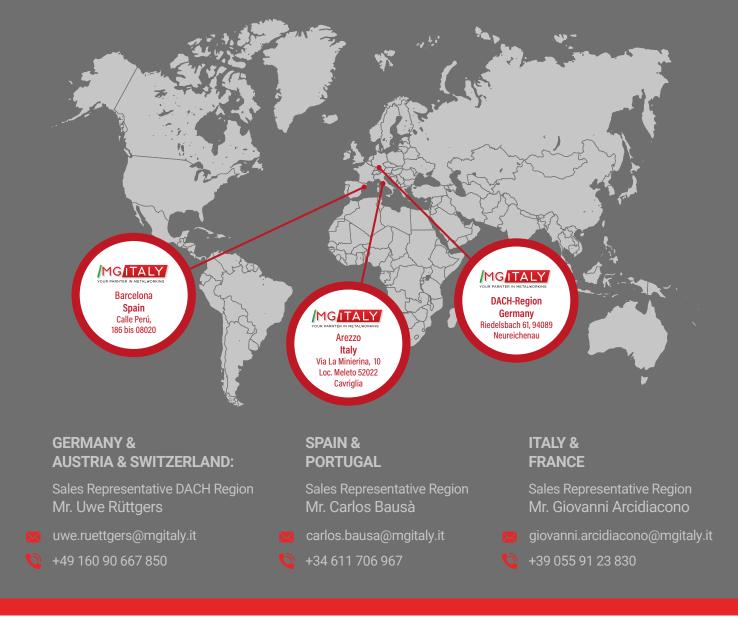
To complete our mechanical processes, thanks to the knowhow and experience acquired, our company is now specialized in the construction, assembly and assembly of groups for industrial plants and machinery.

We also carry out assembly of groups of equipment, carried out internally following the specific requests, guaranteeing care, attention and quality that our major customers recognize us after years of collaboration.

Mechanical assembly

Welding

Notes



MG philosophy:

"Competition is not about what companies produce, but about what they are able to add to the product"

www.mgitaly.it

Customer service:

MGItaly invites you to join its eco-friendly vision: enjoy our catalog in digital format and reduce the environmental impact.